Abstract

Permutation Arrays and Isometries of Sym(n)

Mathieu BOGAERTS

Université Libre de Bruxelles Service de Mathématiques CP 165/11 Faculté des Sciences Appliquées Av. F.D. Roosevelt, 50 B-1050 Bruxelles Belgium

Let Sym(n) be the group of all permutations of n elements. If p_1 , p_2 are two permutations such that p_1 and p_2 coincide in λ positions, the Hamming distance between p_1 and p_2 is the integer $d_n(p_1, p_2) = n - \lambda$.

A permutation array (PA) $\Gamma_{(n,d)}$ of size *s* and minimum distance *d* is a set of *s* permutations of *n* elements such that the distance between any two permutations is at least *d*.

Some data-transmission codes use PA's of maximum size s with respect to n and d. We review some known results and use the group Iso(Sym(n)) of isometries of Sym(n) to study and construct PA's.