Abstract
 Independent sets in finite projective groups

Philippe Cara

Department of Mathematics, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussels, Belgium
(pcara@vub.ac.be)

A subset S of a group G is called independent if we have $s \notin\langle S \backslash\{s\}\rangle$ for each $s \in S$.

In [2], useful connections between independent sets of a given group and incidence geometries on which that group acts flag-transitively are described. It is therefore meaningful to investigate independent sets for well-known families of groups. Such investigations were started in [1, 2, 3]. In the last paper the authors prove that an independent set in $\operatorname{PSL}(2, p)$ has at most 4 elements for p prime. They also show that the size of a maximal independent set is actually 3 when $p \not \equiv \pm 1 \bmod 8$ and $p \not \equiv \pm 1 \bmod 10$.

Investigating small primes which are not covered by [3] I found that $\operatorname{PSL}(2,11)$ and $\operatorname{PSL}(2,19)$ have many independent sets of size 4 . Also that $P S L(2,29)$ has no independent set of size 4 and $\operatorname{PSL}(2,31)$ has an independent set of size 4 which is unique up to conjugacy.

This unique independent set of size 4 for $\operatorname{PSL}(2,31)$ gives rise to a rank 4 geometry which has many nice properties. We study this geometry and explain its connection with independent sets.

We also use geometry to study independent sets in $\operatorname{PSL}(2, p)$ in general and give some open problems in $\operatorname{PSL}(n, q)$ for a true prime power q and $n \geqslant 2$.

References

[1] J. Whiston, Maximal independent generating sets of the symmetric group, J. Algebra 232(2000), 255-268.
[2] P.J. Cameron and Ph. Cara, Independent generating sets and geometries for symmetric groups, J. Algebra 258(2002), 641-650.
[3] J. Whiston and J. Saxl, On the maximal size of independent generating sets of $\mathrm{PSL}_{2}(q)$, J. Algebra 258(2002), 651-657.

