Abstract

 Covers and partial spreads of polar spaces

 Covers and partial spreads of polar spaces}

Andreas Klein and Klaus Metsch

Fachbereich für Mathematik und Informatik Universität Kassel
 Heinrich Plett Str. 40 (AVZ) 34132 Kassel

Let $H\left(3, q^{2}\right)$ be a hermitian surface of $\operatorname{PG}(3, q)$. The lines it contains are called its generators. An ovoid of $H\left(3, q^{2}\right)$ is a set of points of $H\left(3, q^{2}\right)$ meeting every generator exactly once, and a partial ovoid is a set of points meeting every generator in at most one point. It is known that $H\left(3, q^{2}\right)$ has ovoids, for example a hermitian curve $H\left(2, q^{2}\right)$ that is obtained by intersecting $H\left(3, q^{2}\right)$ with a non-tangent hyperplane.

It is a simple calculation to see that an ovoid of $H\left(3, q^{2}\right)$ has exactly $q^{3}+1$ points, and it is not difficult to construct a maximal partial ovoid of $H\left(3, q^{2}\right)$ of size $q^{3}+1-q$. We prove that each maximal partial ovoid has at most $q^{3}+1-q$ points.

We obtain this result by a careful analyzation of the projective space $\mathrm{PG}(4, q)$ when the blocking sets lives in a degenerate quadric. Counting arguments shows that such a blocking set must have many collinear points unless it is quite large. Our method can be also applied to various other blocking sets or partial spreads.

