Abstract

Line spreads of polar spaces of rank 4 inducing generalized quadrangles

Harm Pralle

Institut Computational Mathematics, TU Braunschweig, Pockelsstr. 14, 38106 Braunschweig

Let Π be a polar space of rank 4 over a field \mathbb{K} such that the generalized quadrangle $Res^+(\alpha)$ of a line α of Π which consists of the planes and 3-spaces of Π containing α , admits a spread. Let \mathcal{L} be a line-spread of Π with the following property:

Let \mathcal{D} be the set of 3-spaces of Π in which \mathcal{L} induces spreads. For every point Σ of Π , the 3-spaces of \mathcal{D} containing Σ all contain the spread line $\lambda \in \mathcal{L}$ covering Σ and form a spread of the generalized quadrangle $\operatorname{Res}^+(\lambda)$.

Given such a spread \mathcal{L} , we show that $\Gamma = (\mathcal{L}, \mathcal{D})$ is a generalized quadrangle which we characterize for the classical polar spaces $\Pi \cong Sp_8(\mathbb{K})$ and $O_{10}^-(\mathbb{K})$ as $Sp_4(\mathbb{K}(\zeta))$ and $H_5(\mathbb{K}(\zeta))$, respectively, where $\mathbb{K}(\zeta)$ is a quadratic field extension of \mathbb{K} . For finite polar spaces, we show they are the only two admitting such a spread. We give an example of a spread \mathcal{L} for the infinite hermitian polar space $H_8(\mathbb{C})$ over the complex numbers \mathbb{C} where $\Gamma = (\mathcal{L}, \mathcal{D})$ is a hermitian generalized quadrangle $H_4(\mathbb{Q})$ over the quaternions.

This research is motivated by the following: Dualizing Π , the point set $\bigcup_{X \in \mathcal{D}} X^{\perp_{\Delta}}$ of the dual polar space Δ dual of Π is a hyperplane of Δ intersecting each symp Σ , i.e. an element of maximal type of Δ , in the neighbours of an ovoid of a quad of Σ .