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ADDITIVE CODES OVER GF (q)

Additive code C over GF (q) of length n – additive subgroup
of GF (q)n (if x, y ∈ C ⇒ x + y ∈ C)

Connections:

⇒ Quantum codes (Calderbank, Rains, Shor, and Sloane)

⇒ combinatorial t-designs (Pless and Kim)

⇒ undirected graphs (Glynn; Schlingemann and Werner)

⇒ other combinatorial structures (Huffman, Gulliver,
Parker)
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ADDITIVE CODES OVER GF (4)

GF (4) = {0, 1, ω, ω2}, and ω2 + ω + 1 = 0.

Additive code C over GF (4) of length n – additive subgroup of
GF (4)n. We call C an (n, 2k) code (0 ≤ k ≤ 2n).

Weight of a codeword c ∈ C (wt(c)) is the number of nonzero
components of c.

Minimum weight (distance):
d = d(C) = min{wt(c)|c ∈ C, c 6= 0} → (n, 2k, d) code.

Generator matrix of C – k × n matrix with entries in GF (4)
whose rows are a basis of C.

Weight enumerator of C: C(z) =
∑n

i=0 Aiz
i
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ADDITIVE CODES OVER GF (4)

Trace map Tr : GF (4) → GF (2) is given by Tr(x) = x + x2.
In particular Tr(0) = Tr(1) = 0 and Tr(ω) = Tr(ω2) = 1.

The conjugate of x ∈ GF (4) (denoted x̄) is the following
image of x: 0̄ = 0, 1̄ = 1, and ω̄ = ω2.

The trace inner product of two vectors
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) in GF (4)n is

x ? y =
n∑

i=1

Tr(xiȳi) (1)
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ADDITIVE SELF-DUAL CODES

Dual code (C⊥) – C⊥ = {x ∈ GF (4)n|x ? c = 0 for all c ∈ C}.

If C is an (n, 2k) code, then C⊥ is an (n, 22n−k) code.

Self-orthogonal additive code - C ⊆ C⊥

Self-dual additive code - C = C⊥; it is (n, 2n) code.

Type II code - additive self-dual code, all codewords have
even weight

Type I code - additive self-dual code, some codewords have
odd weight
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BOUNDS

Bounds on the minimum weight (Rains and Sloane)

dI ≤




2bn/6c+ 1, n ≡ 0 (mod 6);
2bn/6c+ 3, n ≡ 5 (mod 6);
2bn/6c+ 2, otherwise

(2)

dII ≤ 2bn/6c+ 2

A code that meets the appropriate bound is called extremal.

If the code is not extremal but no code of given type can
exist with a larger minimum weight, the code is called optimal.
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EQUIVALENCE

Equivalent additive codes - C1 and C2 are equivalent if there
is a map sending the codewords of C1 onto the codewords of
C2 where the map consists of a permutation of coordinates, a
scaling of coordinates by element of GF (4), and conjugation
of some of coordinates.

Equivalence of two additive codes over GF (4) – by oper-
ations on binary codes. The transformation from C into a
binary code is done by applying the map

β : 0 → 000; 1 → 011; ω → 101; ω̄ → 110 | (n, 2k) → [3n, k]2 code

G4 =

(
1 ω
0 ω̄

)
→ G2 =

(
0 1 1 1 0 1
0 0 0 1 1 0

)

I.Bouyukliev - Q-Extension
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EQUIVALENCE

An additive code that is not GF (4)-linear, can be equiva-
lent to a GF (4)-linear code with respect to the definition of
an equivalence of additive codes.

Example: two additive self-dual (2, 22) codes with generator
matrices (

1 1
ω ω

)
,

(
1 1
ωω̄

)

The first code is GF (4)-linear but the second is not. But
they are equivalent by conjugation of the second column of
the generator matrix of the first code.
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PRELIMINARY RESULTS

⇒ All extremal codes 2 ≤ n ≤ 7 – Höhn, 1996

⇒ All extremal codes n = 8, 9, 11, 12 – Gaborit, Huffman,
Kim, and Pless, 2001

⇒ All additive self-dual codes n ≤ 12 – Parker and
Danielsen, 2005

⇒ All extremal codes n = 13, 14; some codes 15 ≤ n ≤ 21 –
Varbanov, 2006

⇒ Some codes 15 ≤ n ≤ 28 with an automorphism of odd
prime order – Huffman, 2007

PROBLEM: To construct/classify extremal ASD codes
over GF (4) of length n ≥ 15.
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ASYMPTOTIC NOTATIONS

O–notation:

O(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ c.g(n) for all n = n0}.

Ω–notation:

Ω(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ c.g(n) ≤ f(n) for all n = n0}.

Θ–notation:

Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0

such that 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n) for all n = n0}.
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CONSTRUCTIVE ALGORITHMS (Shortening)

Gaborit, Huffman, Kim, and Pless – 2001

Let C be an additive self-dual (n, 2n, d) code → by this al-
gorithm an additive self-dual code of length n − 1 can be
constructed.

Let G be a generator matrix of C. Choose any column of G,
say the ith one. The shortened code of C on coordinate i, denoted
C ′, is the code with generator matrix G′ obtained from G by
eliminating one row of G with a nonzero entry in column i
and then eliminating column i.

C ′ – additive self-dual (n− 1, 2n−1, d′ ≥ d− 1) code.

Example:

G =




1 0 1
0 1 1
ω ω ω


 → G′ =

(
0 1
1 1

)
or

(
1 1
ω ω

)
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SHORTENING (Complexity)

Weight enumerator – an additive code over GF (4) consists
of all GF (2)-linear combinations of the rows of the generator
matrix. Therefore, to calculate weight enumerator we can
use binary Gray code.

To reduce a column (one or two nonzero entries) – O(n2)

To reduce all columns – O(n3)

To find the minimum distance of any code – 2n operations
(using the binary Gray code)

Complexity: O(n3.2n)
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ALGORITHMS (Lengthening)

C is an additive self-dual (n − 1, 2n−1, d) code → by this
algorithm we can construct a self-dual (n, 2n, d′) code.

If x is a vector with entries in GF (4)

G′ =




0
G or

ω
x 1




generates an additive self-dual (n, 2n, d′) code C ′ with mini-
mum distance d′ ≤ d + 1.

Example:

G =

(
0 1
1 1

)
, x = [ω ω] → G′ =




0 1 ω
1 1 0
ω ω 1



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LENGTHENING (Complexity)

x ∈ Fn
4 ⇒ 4n possibilities

To calculate the column vector – O(n2)

To construct all possible codes of length n + 1 – O(n2.4n)

To find the minimum distance of any code – 2n operations

Complexity: O(n2.4n.2n) = O(n2.23n)
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CIRCULANT CODES

An additive circulant (n, 2n) code has a circulant gener-
ator matrix of the following form:

A =




a0 a1 a2 . . . an−2 an−1

an−1 a0 a1 a2 . . . an−2

. . . . . . . . . . . . . . . . . .
a2 . . . an−2 an−1 a0 a1

a1 a2 . . . an−2 an−1 a0




An additive cyclic code over GF (4) is generated by one or
two generators.

a = (1 0 ω̄ ω 1) ⇒ A =




1 0 ω̄ ω 1
1 1 0 ω̄ ω
ω 1 1 0 ω̄
ω̄ ω 1 1 0
0 ω̄ ω 1 1



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CIRCULANT CODES (Complexity)

No known part of the generator matrix is necessary;

Non-exhaustive search;

At most 4n possibilities for the vector a ∈ GF (4)n that
generates the code;

To find the minimum distance of any code – 2n operations

Complexity of the algorithm: O(4n.2n) = O(23n).
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GRAPH CODES

Graph code – additive self-dual code over GF (4) with gen-
erator matrix Γ + ωI, where I is the identity matrix and Γ
is the adjacency matrix of a simple undirected graph which
must be symmetric with 0’s along the diagonal.

EXAMPLE:

Γ =




0 1 1
1 0 0
1 0 0


 , G = Γ + ωI =




ω 1 1
1 ω 0
1 0 ω




Theorem (Schlingemann and Werner, 2002): For any self-
dual additive code, there is an equivalent graph code. This means that
there is a one-to-one correspondence between the set of simple undi-
rected graphs and the set of self-dual additive codes over GF (4).
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MINIMUM DISTANCE OF A GRAPH CODE

Minimum distance – the special form of the generator
matrix of a graph code makes it easier to find the distance
of the code. If the generator matrix is given in this form
it is not necessary to check all the codewords to find the
minimum distance of the code.

If s ∈ C and wt(s) ≤ e – then s is a linear combination of at
most e rows of the generator matrix of a graph code C.

– I. Bouyukliev, V. Bakoev,
”
A method for efficiently com-

puting the number of codewords of fixed weights in linear
codes“, Discrete Applied Mathematics, Volume 156 , Issue
15 (2008),Pages: 2986-3004
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TYPE II CODES AND ANTI-EULERIAN GRAPHS

The graphs corresponding to Type II codes have a special
property.

Theorem (Parker and Danielsen, 2006) Let Γ be the adja-
cency matrix of the graph G. The code C generated by G = Γ + ωI is
of Type II if and only if G is anti-Eulerian, i.e., if all its vertices have
odd degree.

Other property:

Extremal Type II codes of given length n have a unique
weight enumerator (Gaborit and Pless, 2001)
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’2–EXTENDING’ OF GRAPH CODES

Parker and Danielsen, 2006

Let G be a generator matrix of (n, 2n, d) code C. First, we
add an arbitrary n-dimensional binary vector x as (n + 1)th

row and (n + 1)th column. To each obtained matrix G′ we add
as (n + 2)th row and (n + 2)th column the following vector y:

yi = (1 +
n+1∑
j=1

gi,j) mod 2, i 6= j, 1 ≤ i ≤ n + 1

EXAMPLE:

G =

(
ω 1
1 ω

)
, x = (0 1) ⇒ G′ =




ω 1 0
1 ω 1
0 1 ω


 , G′′ =




ω 1 0 0
1 ω 1 1
0 1 ω 0
0 1 0 ω



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’2–EXTENDING’ OF GRAPH CODES (Complexity)

To construct all possible matrices G′ – O(2n)

To construct the corresponding matrices G′′ – O(n2)

To check the minimum distance of any code –
∑d−1

i=1

(
n
i

)
operations

Complexity:

O(n2.2n
d−1∑
i=1

(
n

i

)
)

Note: this algorithm can be used only for construction of
Type II codes.
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LENGTHENING OF GRAPH CODES

Lemma: (ZV, 2006) If G is a generator matrix of a graph
code of length n and x is a binary vector

G′ =
(

G xt

x ω

)
(3)

is a generator matrix of a graph code of length n + 1.

Example:

G =




ω 1 0
1 ω 1
0 1 ω


 , x = [1 0 1] → G′ =




ω 1 0 1
1 ω 1 0
0 1 ω 1
1 0 1 ω




0-21



LENGTHENING OF GRAPH CODES (Complexity)

x ∈ Fn
2 ⇒ all possible codes of length n + 1 – O(2n)

To check the minimum distance (at least d) –
∑d−1

i=1

(
n
i

)
op-

erations
Complexity:

O(2n
d−1∑
i=1

(
n

i

)
)

Here d ≈ n/3 < n/2 and

d−1∑
i=1

(
n

i

)
<

bn/2c∑
i=0

(
n

i

)
≤ 2n−1
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The number of known extremal(optimal) ASD
codes over GF (4)

n dI Old New n dII Old New
bound bound bound bound

13 5 ≥ 9 (1) 85845 13 – – –
14 6 ? (2) 2 14 6 1020 (3) 1020
15 6 ≥ 4 (1) ≥ 2118 15 – – –
16 6 ≥ 15 (1) ≥ 8371 16 6 ≥ 28 (1) ≥ 112
17 7 ≥ 1 (2) ≥ 2 17 – – –
18 7 ? (2) ≥ 2 18 8 ≥ 1 (2) ≥ 1
19 7 ≥ 4 (1) ≥ 17 19 – – –
20 8 ≥ 3 (1) ≥ 3 20 8 ≥ 5 (1) ≥ 5
21 8 ≥ 1 (2) ≥ 2 21 – – –

(1)– Gulliver and Kim, 2004; (2)– Huffman, 2005;
(3)– Danielsen and Parker, 2005.
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ADDITIVE CIRCULANT GRAPH CODES

Additive circulant graph (ACG) code – a code correspond-
ing to graph with circulant adjacency matrix.

Example:

B =




ω 1 0 0 1
1 ω 1 0 0
0 1 ω 1 0
0 0 1 ω 1
1 0 0 1 ω




The generating vector has the following property:
bi = bn−i,∀ i = 1, . . . , n− 1, and b0 = ω.

Then, the entries in the generator matrix of ACG code
depend only on the coordinates (b1, b2, . . . , bbn/2c).
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THE ALGORITHM
INPUT: positive integers n and d (1 < d < n).

OUTPUT: all possible ACG codes of length n and minimum distance ≥ d.

• STEP 1: If n is even, take a binary vector g(0) = (g1, g2, . . . g n
2
) and extend

it to a vector g = (ω, g1, g2, . . . , g n
2−1, g n

2
, g n

2−1, . . . , g2, g1). If n is odd then
g(0) = (g1, g2, . . . g n−1

2
), and g = (ω, g1, g2, . . . , g n−1

2
, g n−1

2
, . . . , g2, g1)

• STEP 2: Construct a circulant matrix G (a generator matrix of an ACG
code) with generating vector g.

• STEP 3: Compute all linear combinations of 1, 2, ...., d− 1 rows of G and
check their weights. If all weights are ≥ d then the minimum distance is
at least d.

• STEP 4: If g(0) is not all-one vector – g(0) = g(0) + 1, Step 1.
• END.

Complexity:

O(2bn/2c
d−1∑
i=1

(
n

i

)
)
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RESULTS

ACG codes of length 13 ≤ n ≤ 36
for the maximum reached d

n d number n d number n d number
13 5 2 21 7 11 29 11 1
14 6 3 22 8 14 30 12 ≥ 1
15 6 2 23 8 2 31 10 62
16 6 6 24 8 51 32 10 108
17 7 1 25 8 31 33 10 76
18 6 52 26 8 210 34 10 ≥ 144
19 7 4 27 8 140 35 10 ≥ 1
20 8 2 28 10 1 36 10 ≥ 4
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GRAPH CODES OVER GF (q2)

A graph code C is an additive code over GF (q2) that has
a generator matrix of the form G = Γ + ωI, where I is the
identity matrix, ω is a primitive element of GF (q2), and Γ is
the adjacency matrix of a undirected q-weighted graph.

Example: A graph code over GF (9)

Γ =




0 1 2 1
1 0 2 0
2 2 0 1
1 0 1 0


 , G = Γ + ωI =




ω 1 2 1
1 ω 2 0
2 2 ω 1
1 0 1 ω




Theorem (Danielsen, 2008): Every self-dual additive code
over GF (q2) is equivalent to a graph code.

Classification of all self-dual additive codes over
GF (9), GF (16), and GF (25) up to lengths 8, 6, and 6, re-
spectively (Danielsen, 2008).
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A RELATION TO QUANTUM CODES

MAIN PROBLEM: To construct good quantum codes
(this is difficult problem, in general).

Let V be complex Hilbert space (tensor product of N
smaller spaces). Single elements of V will represent pure
states of quantum computer. A quantum code Q will then
be a subspase of V (G.Nebe, E.Rains, N.Sloane -

”
Self-Dual

Codes and Invariant Theory“).

Theorem: Let C be an additive self-orthogonal (n, 2n−k)
code over GF (4) such that no codewords with weight < d in
C⊥\C. Then, there exists a quantum code with parameters
[[n, k, d]]. (Calderbank, Rains, Shor, and Sloane, 1998)
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QUANTUM COMPUTING

• Quantum computing is a relatively new interdisciplinary
field that has recently attracted many researchers from
physics, mathematics, and computer science.

• The main idea of quantum computing is to utilize the
laws of quantum physics to perform fast computations.

• Quantum information is represented by the states of
quantum mechanical systems.

• Since the information–carrying quantum systems will in-
evitably interact with their environment, one has to deal
with decoherence effects that tend to destroy the stored
information.

• Hence, it is infeasible to perform quantum computations
without introducing techniques to remedy this problem
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QUANTUM INFORMATION

V = ⊗N(C2) = C2 ⊗ C2 ⊗ . . .⊗ C2, dimV = 2N .
The tensor factors C2 are often called quantum bits

(qubits). A qubit has two possible states, labelled |0〉 and |1〉.

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
, α|0〉+ β|1〉 =

(
α
β

)

Unlike a classical bit, a qubit can be in a superposition
of |0〉 and |1〉. The state of a general qubit can be denoted
α|0〉+ β|1〉 (α, β ∈ C), with |α|2 + |β|2 = 1.

Here |α|2 being the probability of getting the result |0〉
when measuring the qubit, and |β|2 the probability of getting
a |1〉.

Several qubits form quantum register. The state of a two-
qubit register can be denoted α|00〉+ β|01〉+ γ|10〉+ δ|11〉.
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QUANTUM INFORMATION

A quantum state can not be copied, i.e., there is no
operation that takes |φ〉 to |φφ〉, where |φ〉 is any quantum
state.

|φ〉, |ψ〉 – quantum states;

Copying operation:
|φ〉 → |φφ〉; |ψ〉 → |ψψ〉; |φ〉+ |ψ〉 → |φφ〉+ |ψψ〉

But by tensor product:
|φ〉+ |ψ〉 → (|φ〉+ |ψ〉)⊗ (|φ〉+ |ψ〉) = |φφ〉+ |ψψ〉+ |φψ〉+ |ψφ〉
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QUANTUM CODES

The space of errors to a single qubit is spanned by the four
unitary matrices (Pauli operators):

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)

Any error on a single qubit, |φ〉 → E|φ〉, may be expressed
as a linear combination of the Pauli matrices.

|φ〉 → (aI + bX + cZ + dY )|φ〉 = a|φ〉+ bX|φ〉+ cZ|φ〉+ dY |φ〉

The minimum distance d of a quantum code, is the min-
imum weight error operator that gives an errored state not
orthogonal to the original state, and therefore not guaran-
teed to be detectable (Ashikhmin, Knill, 2002).
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QUANTUM CODES

Let Gn be a finite group generated by the matrices in
the error basis and E ∈ Gn be an element of that group
(E = E1 ⊗ E2 ⊗ . . .⊗ En, Ei - an error on a single qubit).

Weight of an error E: wt(E) = |{Ei 6= I}|

A quantum code Q is said to have minimum distance d if
and only if it can detect all errors in Gn of weight less than d,
but cannot detect some error of weight d. Also, such a code
can correct b(d− 1)/2c errors in Gn.

An additive quantum [[N, k, d]] code is a 2k dimensional sub-
space of V with minimum distance d.
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ADDITIVE AND LINEAR CODES OVER GF (4)

Every GF (4)-linear code is an additive code but the oppo-
site is not true.

Example:

[6, 3, 4]4 :




1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1


 →




1 0 0 1 ω ω
ω 0 0 ω ω̄ ω̄
0 1 0 ω 1 ω
0 ω 0 ω̄ ω ω̄
0 0 1 ω ω 1
0 0 ω ω̄ ω̄ ω




: (6, 26, 4)

The additive code C is linear iff c is a codeword then ωc is
also a codeword.
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ADDITIVE AND LINEAR CODES OVER GF (4)

Hermitian inner product
u.v =

∑n
i=1 uivi – u, v ∈ GF (4)n, vi = v2

i

A linear code over GF (4) is self-orthogonal (with respect
to the Hermitian inner product) if and only if it is additive
self-orthogonal (with respect to the trace inner product)
code – (Calderbank et al., 1998)

⇒ If C is a Hermitian self-orthogonal linear [n, k, d] code
over GF (4) with dual distance d⊥ then there exists a quantum
error-correcting [[n, n− 2k, d⊥]] code.
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RESULTS FOR QUANTUM CODES

There exist quantum codes with parameters:

• [[24, 8, 5]] (s.o. [24, 8, 10]4 code, d⊥ = 5) – old bound d = 4;
• [[28, 10, 6]] (s.o. [28, 9, 12]4 code, d⊥ = 6) – old bound d = 5;
• [[30, 12, 6]] (s.o. [30, 9, 12]4 code, d⊥ = 6)– old bound d = 5;
• [[30, 16, 5]] (s.o. [30, 7, 16]4 code, d⊥ = 5) – old bound d = 4;
• [[32, 6, 8]] (s.o. [32, 13, 12]4 code, d⊥ = 8) – old bound d = 7;
• [[34, 24, 4]] (s.o. [34, 5, 22] code, d⊥ = 4) – old bound d = 3
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GRAPH CODES AND GF(4)-LINEAR CODES

A graph code cannot be GF(4)-linear (van den Nest, 2005).

Could be a graph code equivalent to GF(4)-linear code?

The conjugation of some of the columns is equivalent to
the following:

• Let A be a binary diagonal matrix, and G = Γ + ωI is a
generator matrix of an additive self-dual code C;

• Then G′ = Γ+A+ωI generates a code C ′ that is equivalent
to C.

C ′ is linear iff Γ2 + AΓ + ΓA + Γ = I (van den Nest, 2005)
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COMBINATORIAL DESIGNS

t− (v, k, λt) design (t-design) – a pair (V,B) where V is a set
of v points and B is a set of b blocks each containing k different
points, each point being contained in r different blocks and
every t different points being contained in exactly λt blocks.

λt

(
v
t

)
= b

(
k
t

)
and for 0 ≤ s ≤ t, each t− (v, k, λt) design is

s− (v, k, λs) design.

λs = λt

(
v − s
t− s

)
/

(
k − s
t− s

)
(λ1 = r and λ0 = b).
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COMBINATORIAL DESIGNS

Two t-designs (V1,B1) and (V2,B2) are isomorphic if there
exists a bijection α : V1 → V2 such that B1α → B2.

An automorphism is an isomorphism of a t-design with
itself.

The set of all automorphisms of a t-design D forms a
group, the (full) automorphism group – Aut(D).

Support of a vector x is the set of all coordinate positions
of x such that any nonzero position is denoted by 1.

Example: x = (ω01ω̄0ω1) → (1011011)
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ADDITIVE CODES OVER GF (4) AND DESIGNS

THEOREM (Kim and Pless, 2003): Let ni = 6m + 2(i − 1)
with m ≥ 1 any integer and i = 1, 2, or 3. Let C be an ex-
tremal additive Type II (ni, 2

ni) code over GF (4) with mini-
mum weight d = 2m + 2 ≥ 6. Then the supports of the vectors
of each weight w in C where Aw 6= 0 and d ≤ w ≤ ni hold a
(7− 2i)-design with possibly repeated blocks.

THEOREM (Kim and Pless, 2003):
The set of supports of the odd minimum weight vectors in

a code shortened from a linear extremal even self-dual code
hold a simple design (without repeated blocks).

0-40



RESULTS FOR DESIGNS

1020 nonequivalent (14, 214, 6) Type II codes, weight enu-
merator: 1 + 273z6 + 2457z8 + 7098z10 + 6006z12 + 549z14.

Codewords of weight 6 – 3-design with possibly repeated

blocks, λ3

(
14
3

)
= 273

(
6
3

)
⇒ λ3 = 15.

1020 nonisomorphic 3 − (14, 6, 15) designs – 490 designs
with repeated blocks and 530 without repeated blocks.

Number of 3− (14, 6, 15) designs D with |Aut(D)| = α

α 1 2 3 4 6 8 12 18
number 625 258 27 38 27 13 7 1

α 21 24 28 36 48 84 168 2184
number 1 16 1 1 1 1 1 2
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RESULTS FOR DESIGNS

There are 5 known Type II additive (20, 220, 8) codes (Gul-
liver and Kim, 2004)

– the set of supports of weight 8 vectors hold a 3-design
with possibly repeated blocks. Weight enumerator: 1+1710z8+
20976z10 + . . . + 141360z18 + 6444z20

⇒ λ = 1710
(
20
3

)
/
(
8
3

)
= 84.

⇒ 5 nonisomorphic 3 − (20, 8, 84) designs (three designs
with repeated blocks and two simple designs) – group order
20, 40, 6840, 2880, and 3840.

Two codes are equivalent to the known GF(4)-linear
[20, 10, 8] self-dual codes. By shortening:

⇒ two nonequivalent simple 2 − (19, 7, 28) designs D1 and
D2, |Aut(D1)| = 144, |Aut(D2)| = 192.
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THANKS FOR YOUR ATTENTION!

0-43


