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Abstract

We present two families of constacyclic codes with large
automorphism groups.

The codes are obtained from the twisted tensor product
construction.

The talk is based on the paper "Twisted Tensor Product
Codes", Designs, Codes, Cryptography 47 (2008), 191-219.



Experimental Data

Data from a computer search, as published in

A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert, A.
Wassermann: Error-Correcting Linear Codes, Classification by
Isometry and Applications, 2006.

There exists a [18, 9, 8] code over F4:



Experimental Data



Experimental Data

Observe that 16320 is the order of PΓL(2, 16), since

|PΓL(2, q)| = (q2 − 1)(q2 − q)h
q − 1

(q = ph, p prime), which, for q = 16, evaluates to

255 · 16 · 15 · 4
15

= 16320

Question: Is there a connection?



Experimental Data

Remark: That same code was also mentioned (briefly) in:

MacWilliams, Odlyzko, Sloane, and Ward, 1978:

The Brouwer/Grassl tables contain a reference to this paper.



Results

THEOREM 1
A) There exist constacyclic [q2 + 1, q2 − 8,≥ 6]q for any q ≥ 3.
They are cyclic if and only if q is even.

B) There exist [q2 + 2, q2 − 7,≥ 6]q codes for any q ≥ 4 even.

In both cases, the codes are invariant under PΓL(2, q2).

THEOREM 2
There exist constacyclic [q3 + 1, q3 − 7,≥ 5]q for any q ≥ 3.
The codes are invariant under PΓL(2, q3).



q = ph, p prime.

Fq = {αi | i = 0, . . . , q − 2} ∪ {0}.

α a primitive element over Fp.

Φ : t 7→ tp the Frobenius automorphism.



PG(n, q) the n-dimensional projective space over Fq.

PG(1, q) = {(t , 1)︸ ︷︷ ︸
t

| t ∈ Fq} ∪ {(1, 0)︸ ︷︷ ︸
∞

}

Automorphism group:

PΓL(2, q) = {
(

a c
b d

)
e
| a, b, c, d ∈ Fq, ad − bc 6= 0, e ∈ Zh}

acting by semilinear right multiplication:

(u, v)·
(

a c
b d

)
h

=
(
ua+vn, uc+vd

)Φh
=

(
(ua+vn)Φ

h
, (uc+vd)Φ

h)
.

The conic Y 2 = XZ :

{(t2, t , 1)︸ ︷︷ ︸
Ht

| t ∈ Fq} ∪ {(1, 0, 0)︸ ︷︷ ︸
H∞

}

Same automorphism group, different action.



• The Frobenius automorphism of Fqs over Fq

φs : x 7→ xq

of order s leaving Fq fixed.
• The relative trace from Fqs to Fq

Ts : x 7→ x + φs(x) + · · ·+ φs−1
s (x)

• The relative norm from Fqs to Fq

Ns : x 7→ x · φs(x) · · ·φs−1
s (x)

We write φ for φh (if q = ph with p prime)



Vector Spaces over Finite Fields

Fk
qs the k -dimensional vector space over Fqs .

Two types of subspaces:

• Fi
qs for i ≤ k is called subspace

• Fk
qi for i | s is called subfield subspace

A basis is a set of linearly independent vectors that spans the
subspace over

• Fqs

• Fqi



Linear Codes
Linear codes are subspaces of Fn

q.

[n, k ]q — a linear code C over Fq of length n, dimension k .

c = (c0, . . . , cn−1) ∈ C a codeword (simply a vector over Fq).

A generator matrix Γ is a k × n matrix whose rows form a basis
for the code.

A check matrix ∆ is a (n − k)× n matrix whose rows form a
basis for the dual code C⊥.

Thus, Γ ·∆> = 0.



The Minimum Distance (I)

For a code to be useful
• the minimum distance d should be large,
• the dimension k should be large,
• the length n should be small.

These are contradicting aims.



The Minimum Distance (II)

An [n, k ]q code is distance optimal if has the largest value of d
among all [n, k ]q codes.

It is a challenge to find distance optimal codes.

[n, k , d ]q — a linear code over Fq of length n, dimension k and
minimum distance d .

[n, k ,≥ d ]q — a linear code over Fq of length n, dimension k
and minimum distance ≥ d .



Cyclic Codes

A code C is cyclic if

(c0, c1, . . . , cn−1) ∈ C ⇐⇒ (cn−1, c0, . . . , cn−2) ∈ C.

Example: BCH codes, Reed-Solomon codes.

Remark:

• Cyclic codes are in 1 to 1 correspondence to the ideals in
the ring Fq[X ]/(X n − 1) (provided gcd(n, q) = 1).



Constacyclic Codes

A code C is constacyclic if

(c0, c1, . . . , cn−1) ∈ C ⇐⇒ (κcn−1, c0, . . . , cn−2) ∈ C

for some κ ∈ F×q (the same κ for every c ∈ C).

A constacyclic code is cyclic if κ = 1.

Example: see below



Projective Codes

A code is called projective if
• No coordinate is always zero.
• No two coordinates are linearly dependent.

Let C be a projective code with k × n generator matrix Γ.

x0, . . . , xn−1 the columns of Γ.

m

P(x0), . . . , P(xn−1) a set of points in PG(k − 1, q).



Why do we Need Projective Codes?

THEOREM (well known)

Let C be a linear code over Fq with check matrix ∆. The
following are equivalent:

• C has minimum distance d
• In ∆, any d − 1 columns are linearly independent and

there exist d columns that are linearly dependent.

That is, quite often the dual code is projective.



Projective Codes

A code is called projective if
• No coordinate is always zero.
• No two coordinates are linearly dependent.

Let C be a projective code with k × n generator matrix Γ.

x0, . . . , xn−1 the columns of Γ.

m

P(x0), . . . , P(xn−1) a set of points in PG(k − 1, q).



Why do we Need Projective Codes?

THEOREM

Let C be a linear code over Fq with check matrix ∆. The
following are equivalent:

• C has minimum distance d
• In ∆, any d − 1 columns are linearly independent and

there exist d columns that are linearly dependent.

That is, quite often the dual code is projective.



Recipe for Finding Good Codes

In order to find [n, k ,≥ d ]q codes, we have to find n points in
PG(n − k − 1, q) with the property that

Any d − 1 are independent.

In order to reduce excess searching, we need to talk about
Code Isomorphism.



Permutational, Monomial and Semilinear Isometry
Isometric Codes: Different codes may behave the same way
with respect to the Hamming metric.

There are three types of code isometries:

• Permutational isometries (permuting the coordinates),
• Monomial isometries (permuting the coordinates and

multiplying non-zero constants),
• Semilinear isometries (all of the above plus field

automorphisms).

When we say ’Code’, we often mean the equivalence class of
isometric codes.

In this sense, a code can be cyclic / constacyclic in many
different ways, according to different arrangements of the
coordinates.



Permutational, Monomial and Semilinear
Automorphism Groups

An automorphism is a isometry (of the Hamming space) that
maps the code to itself.

There are three types of automorphism groups:

• Permutational automorphism group PAut,
• Monomial automorphism group MAut,
• Semilinear automorphism group ΓAut.

PAut ≤ MAut ≤ ΓAut.



Automorphisms of Projective Space

We need to understand the automorphisms of projective space.

An automorphism of projective space is an

incidence preserving isomorphism

(also called collineation).

Two sets A and B in PG(n, q) are projectively equivalent if there
is an automorphism α of PG(n, q) with α(A) = B.



Automorphisms of Projective Space

There are two types of automorphisms of projective space:

• Linear: GL(n + 1, q) acts on PG(n, q) as follows:

A · P(x) = P(Ax).

• Semilinear: φ acts on PG(n, q) as follows:

φ(P(x)) = φ(P(x0, . . . , xn)) = P(φ(x0), . . . , φ(xn)).

The induced maps of the first type are called projectivities. Let
PGL(n + 1, q) be the group generated by them.



The Fundamental Theorem of Projective Geometry

Together they generate the semilinear group

PΓL(n + 1, q) = PGL(n + 1, q) n 〈φ〉.

THEOREM (well known)
For n ≥ 2, the automorphism group of PG(n, q) is PΓL(n + 1, q).



Some One-to-One Correspondences
There is a one-to-one correspondence


isometry classes

of projective
[n, k ]q-codes

 ↔


projective equivalence
classes of n-point-sets

in PG(n − k − 1, q)



There is a one-to-one correspondence


isometry classes

of projective
[n, k ,≥ d ]q-codes

 ↔


projective equivalence
classes of n-point-sets

in PG(n − k − 1, q)
any d − 1 independent





The Construction (I)
Let Vn = Fn

qs be an n-dimensional vector space over Fqs .

Consider

⊗sVn := Vn ⊗ Vn ⊗ · · · ⊗ Vn (s times)

Define a mapping

ιs : Vn → ⊗sVn,

x 7→ x ⊗ φs(x)⊗ φ2
s(x)⊗ · · · ⊗ φs−1

s (x).

This induces a mapping between the corresponding projective
spaces:

ιs : P(Vn) → P(⊗sVn)



The Construction (II)

The points of PG(1, q) are often identified as follows:

P(1, t) ↔ t , P(0, 1) ↔∞

The Veronese map

νk : PG(1, q) → PG(k − 1, q), P(a, b) 7→ P(ak , ak−1b, . . . , bk )

ν2(PG(1, q)) is the conic

{P(1, t , t2), t ∈ Fq2} ∪ {P(0, 0, 1)}.



The Construction (III)

Consider

• ι2 ◦ ν3(PG(1, q2)) ⇒ n = q2 + 1 points in PG(8, q2)

• ι3(PG(1, q3)) ⇒ n = q3 + 1 points in PG(7, q3)

The image lies in an Fq-subfield subspace.
• PG(8, q)

• PG(7, q)

The codes are projective codes whose point sets are the
subspace bases. For Theorem 1 B, add the nucleus to the
conic ν2(PG(1, q)) (recall that 2 | q in this case).



Example: Theorem 1
Using t = 0, 1, . . . ,∞ for the points of the projective line, the ν2
image of PG(1, q2) is the conic

{P(1, t , t2), t ∈ Fq2} ∪ {P(0, 0, 1)}.

The ι2-image of this set is

{P (1, tq+1, t2q+2, tq, t , t2q, t2, t2q+1, tq+2)︸ ︷︷ ︸
=:yt

, t ∈ Fq2}

together with P (0, 0, 1, 0, 0, 0, 0, 0, 0)︸ ︷︷ ︸
y∞

.

φ(1) φ(t) φ(t2)
⊗ 1 tq t2q

1 1 tq t2q

t t tq+1 t2q+1

t2 t2 tq+2 t2q+2

ordering of
basis elts.
0 3 5
4 1 7
6 8 2



Example q = 16 (with α4 = α + 1):

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 α5 α5 α10 α10 α10 α5 1 α10 1 α5 1 α5 α10 1 0 1
0 1 α10 α10 α5 α5 α5 α10 1 α5 1 α10 1 α10 α5 1 1 0
0 1 α4 α α8 α2 α5 α10 α12 α11 α6 α13 α9 α7 α14 α3 0 0
0 1 α α4 α2 α8 α5 α10 α3 α14 α9 α7 α6 α13 α11 α12 0 0
0 1 α8 α2 α α4 α10 α5 α9 α7 α12 α11 α3 α14 α13 α6 0 0
0 1 α2 α8 α4 α α10 α5 α6 α13 α3 α14 α12 α11 α7 α9 0 0
0 1 α9 α6 α3 α12 1 1 α12 α6 α6 α3 α9 α12 α9 α3 0 0
0 1 α6 α9 α12 α3 1 1 α3 α9 α9 α12 α6 α3 α6 α12 0 0


This is a generator matrix of an [18, 9, 8] code over F16 (with
automorphism group PΓL(2, 16)).



Example: Theorem 1

The image lies in an Fq-subfield subspace.

Need: Base change.

Observe that for F2
q = Fq(β) we have[

1 1
β βq

]
·
[

t
tq

]
=

[
t + tq

βt + βqtq

]
=

[
T2(t)

T2(βt)

]
which is in the (quadratic) subfield Fq.

Apply this trick in general:



Example: Theorem 1

Sβy>t =

0BBBBBBBBBBB@

1
1

1
1 1
βqβ

1 1
βqβ

1 1
βqβ

1CCCCCCCCCCCA

0BBBBBBBBBBBB@

1
tq+1

t2q+2

tq

t
t2q

t2

t2q+1

tq+2

1CCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

1
tq+1

t2q+2

tq + t
βq tq + βt
t2q + t2

βq t2q + βt2

t2q+1 + tq+2

βq t2q+1 + βtq+2

1CCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

1
N2(t)
N2(t2)
T2(t)

T2(βt)
T2(t2)

T2(βt2)
T2(tq+2)

T2(βtq+2)

1CCCCCCCCCCCCA
= x>t

Let ∆ be the check matrix whose columns are the xt , t ∈ Fq2

and x∞ = y∞. This defines the code.



Example: Theorem 1

Here, the image lies in an F4 subspace.

The base change matrix is

Sβ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 α8 α2 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 α8 α2 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 α8 α2





Example: Theorem 1

Sβ ·M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 α5 α5 α10 α10 α10 α5 1 α10 1 α5 1 α5 α10 1 0 1
0 1 α10 α10 α5 α5 α5 α10 1 α5 1 α10 1 α10 α5 1 1 0
0 0 1 1 1 1 0 0 α10 α10 α5 α5 α5 α5 α10 α10 0 0
0 1 α10 α5 1 0 α5 α10 0 1 α10 α5 1 0 α5 α10 0 0
0 0 1 1 1 1 0 0 α5 α5 α10 α10 α10 α10 α5 α5 0 0
0 1 1 0 α5 α10 α10 α5 1 0 0 1 α10 α5 α5 α10 0 0
0 0 α5 α5 α10 α10 0 0 α10 α5 α5 α10 α5 α10 α5 α10 0 0
0 1 1 α10 α10 0 1 1 0 α10 α10 α10 1 0 1 α10 0 0





Example: Theorem 1

Or, with ω = α5 a primitive element for F4 with ω2 = ω + 1.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 ω ω ω2 ω2 ω2 ω 1 ω2 1 ω 1 ω ω2 1 0 1
0 1 ω2 ω2 ω ω ω ω2 1 ω 1 ω2 1 ω2 ω 1 1 0
0 0 1 1 1 1 0 0 ω2 ω2 ω ω ω ω ω2 ω2 0 0
0 1 ω2 ω 1 0 ω ω2 0 1 ω2 ω 1 0 ω ω2 0 0
0 0 1 1 1 1 0 0 ω ω ω2 ω2 ω2 ω2 ω ω 0 0
0 1 1 0 ω ω2 ω2 ω 1 0 0 1 ω2 ω ω ω2 0 0
0 0 ω ω ω2 ω2 0 0 ω2 ω ω ω2 ω ω2 ω ω2 0 0
0 1 1 ω2 ω2 0 1 1 0 ω2 ω2 ω2 1 0 1 ω2 0 0



Or, in standard form...



Example: Theorem 1



1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 ω2 ω
0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 ω ω2

0 0 1 0 0 0 0 1 0 ω 0 ω2 0 ω 1 ω ω 0
0 0 0 1 0 0 0 1 0 ω2 0 ω 1 ω 1 ω2 ω2 1
0 0 0 0 1 0 0 1 0 ω2 0 ω2 ω 0 ω2 1 ω2 0
0 0 0 0 0 1 0 1 0 ω 0 ω 0 ω2 0 ω2 1 ω
0 0 0 0 0 0 1 1 0 1 0 1 ω2 ω ω ω2 ω ω
0 0 0 0 0 0 0 0 1 1 0 0 ω2 ω2 ω ω ω2 ω2

0 0 0 0 0 0 0 0 0 0 1 1 ω ω ω2 ω2 ω2 ω2





Are The Codes New?

The following question arises:

QUESTION 1
Are the codes of Theorem 1 and 2 new?

Fact 1: There are BCH-codes with the same parameters as the
codes in Theorem 1 A (see below).

Fact 2: There are codes with the same parameters as the duals
of the codes in Theorem 2



Fact 1: A Class of BCH codes

For n = q2 + 1, take the cyclotomic sets of 0, 1, 2 mod q2 + 1:

{0}
{1, q, q2 ≡ −1,−q,−q2 ≡ 1}
{2, 2q, 2q2 ≡ −2,−2q,−2q2 ≡ 2}

9 roots, in order:

−2q, −q, −2, −1, 0, 1, 2,︸ ︷︷ ︸
consecutive set

q, 2q,

This yields a [q2 + 1, q2 − 8,≥ 6]q BCH-code.

(minimum distance ≥ 6 b/c we have a consecutive set of size 5)



Are The Codes New?

Since BCH-codes are cyclic, we ask:

QUESTION 2
Are the codes of Theorem 1 and 2 cyclic?

If we can show that the codes of Theorem 1 A are not
cyclic, then we have shown that they are not
BCH-codes and hence (likely) new.

We ask:

QUESTION 3
Given a projective code, how can we tell if the code is cyclic?



When is a Projective Code Cyclic?

C is constacyclic ⇐⇒

There exists a code automorphism α with

α(x0) = x1, α(x1) = x2, . . . α(xn−1) = κx0.

C is cyclic ⇐⇒ the above with κ = 1.



When is a Projective Code Cyclic?

The codes are images of PG(1, q). Thus we ask:

QUESTION 4
What are the cyclic collineations of PG(n, q)?



Cyclic Collineations of Projective Space

LEMMA: (Hirschfeld 1973)

# conjugacy classes of cyclic projectivities of PG(d − 1, q)

= 1
q−1 ·# subprimitive polynomials of degree d over Fq

=
Φ(θd−1(q))

d (with Φ Euler’s totient function)

This answers the question for when a code is constacyclic. We
still need the find the answer for cyclic.



When is a Projective Code Cyclic?

C is constacyclic ⇐⇒

There exists a code automorphism α with matrix T s.t.

T nx0 = κx0, κ 6= 0, and T ix0 6∈ 〈x0〉 i = 1, . . . , n − 1

C is cyclic ⇐⇒ the above with κ = 1.



The Exponent of a Polynomial

Let m(x) ∈ Fq[x ] be monic, irreducible of degree d > 1.

The Exponent e
The Exponent of m, denoted Exp(m), is the smallest positive
integer e such that

m(x) divides xe − 1

If β denotes a root of m(x) in Fqd then e is the order of β in F×qd .



The Subexponent of a Polynomial

The Subxponent s
The Subexponent of m, denoted Subexp(m), is the smallest
positive integer s such that

m(x) divides xs − κ

for some κ ∈ F×q (κ is called integral element).

If β denotes a root of m(x), then s is the order of β in the factor
group F×qd /F×q . Therefore,

s =
e

gcd(q − 1, e)
.



Primitive and Subprimitive Polynomials
m(x) is called primitive if

e = qd − 1

m(x) is called subprimitive if

s = θd−1(q) =
qd − 1
q − 1

= |PG(d − 1, q)|

Remarks:
• If m(x) is primitive, multiplication by β is a cyclic

collineation of the affine space Fqd over Fq.

• If m(x) is subprimitive, multiplication by β is a cyclic
collineation of the projective space Fqd over Fq.



Generalizing Hirschfeld’s Result

In
T nx0 = κx0,

we need κ = 1. Thus we need to count subprimitive
polynomials with integral element κ = 1.

Actually, we’ll compute the more general counting function

Rκ(d , q) = # of subprimitive polynomials of degree d
over Fq with integral element κ ∈ Fq.

Write κ = αi where α is a primitive element of Fq.



Generalizing Hirschfeld’s Result

LEMMA

Rκ(d , q) = Rαi (d , q) =


g

Φ(g)
· Φ(θd−1(q))

d
if gcd(i , g) = 1

0 otherwise.

where g = gcd(q − 1, θd−1(q))

Remarks:

• The function Rαi (d , q) is periodic in i with period
gcd(q − 1, θd−1(q)).

• The non-zero function values depend only on d and q, but
not on i .

• The factor q − 1 in Hirschfeld’s formula is replaced by g
Φ(g) .



Counting Subprimitive Polynomials by Integral
Element (IV)

COROLLARY

Rκ(2, q) =


1
2
Φ(q + 1) for all κ if 2 | q,

Φ(q + 1) if 2 - q and κ is a nonsquare in F×q ,
0 if 2 - q and κ is a square in F×q .

COROLLARY

R1(2, q) =

{ 1
2
Φ(q + 1) if 2 | q,

0 if 2 - q.



Cyclic Code Automorphisms

COROLLARY
The codes of length q2 + 1 or q3 + 1 are cyclic iff 2 | q

COROLLARY
The codes of length q2 + 1 for 2 - q are not BCH-codes

Remark:
If the codes are cyclic, then they are cyclic in R1(2, q) many
ways.



The Twisted Tensor Product Representation

Let G ≤ PΓL(n, qs)

G acts on Vn = Fn
qs .

G also acts on ⊗sVn, namely

(v1 ⊗ · · · ⊗ vs, g) 7→

v1g ⊗ φs(v2g)⊗ φ2
s(v3g)⊗ · · · ⊗ φs−1

s (vsg)

This representation can be written over the smaller field Fq

Let ρ denote this representation.



The Twisted Tensor Product Representation

The transformation in PGL(2, qs) induced by
(

a b
c d

)
(with

ad − bc 6= 0) becomes the map

ϕa,b,c,d : t 7→ at + c
bt + d

Using the base change matrix Sβ from above, we wish to write
out the representation explicitly.



The Representation Associated with Theorem 1

ρ(ϕa,b,c,d) = U(a, b, c, d , β) = (U1 | U2 | U3)

with Ui as follows (using β a primitive elt of Fq2 and
δ = 1/(β − βq) and γ = βδ)

U1 =

0BBBBBBBBBBBBBBBBBBBBBBBBB@

N2(d2) 4N2(bd) N2(b2)

N2(cd)
N2(ad)

+N2(bc)
+T2(aqbcdq)

N2(ab)

N2(c2) 4N2(ac) N2(a2)

T2(cd2q+1)
2T2(abqdq+1)

+2T2(bq+1cdq)
T2(ab2q+1)

T2(cd2q+1β)
2T2(abqdq+1β)

+2T2(bq+1cdqβ)
T2(ab2q+1β)

T2(c2d2q) 4T2(abqcdq) T2(a2b2q)

T2(c2d2qβ) 4T2(abqcdqβ) T2(a2b2qβ)

T2(cq+2dq)
2T2(aq+1cdq)

+2T2(abqcq+1)
T2(aq+2bq)

T2(cq+2dqβ)
2T2(aq+1cdqβ)

+2T2(abqcq+1β)
T2(aq+2bqβ)

1CCCCCCCCCCCCCCCCCCCCCCCCCA



The Representation Associated with Theorem 1

U2 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

2T2(bqdq+2γ) 2T2(bd2q+1δ) T2(b2qd2γ)

T2(aqcdq+1γ)
+T2(bqcq+1dγ)

T2(acqdq+1δ)
+T2(bcq+1dqδ)

T2(aqbqcdγ)

2T2(aqcq+2γ) 2T2(ac2q+1δ) T2(a2qc2γ)

2T2(bqcdq+1γ)
+T2(aqdq+2γ)
+T2(bqcqd2γ)

2T2(bcqdq+1δ)
+T2(ad2q+1δ)
+T2(bcd2qδ)

T2(aqbqd2γ)
+T2(b2qcdγ)

2T2(bqcdq+1βγ)
+T2(aqdq+2βqγ)
+T2(bqcqd2βqγ)

2T2(bcqdq+1βqδ)
+T2(ad2q+1βδ)
+T2(bcd2qβδ)

T2(aqbqd2βqγ)
+T2(b2qcdβγ)

2T2(aqcqd2γ)
+2T2(bqc2dqγ)

2T2(bc2qdδ)
+2T2(acd2qδ)

T2(a2qd2γ)
+T2(b2qc2γ)

2T2(aqcqd2βqγ)
+2T2(bqc2dqβγ)

2T2(bc2qdβqδ)
+2T2(acd2qβδ)

T2(a2qd2βqγ)
+T2(b2qc2βγ)

2T2(aqcq+1dγ)
+T2(aqc2dqγ)
+T2(bqcq+2γ)

2T2(acq+1dqδ)
+T2(ac2qdδ)
+T2(bc2q+1δ)

T2(a2qcdγ)
+T2(aqbqc2γ)

2T2(aqcq+1dβqγ)
+T2(aqc2dqβγ)
+T2(bqcq+2βγ)

2T2(acq+1dqβδ)
+T2(ac2qdβqδ)
+T2(bc2q+1βqδ)

T2(a2qcdβqγ)
+T2(aqbqc2βγ)
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The Representation Associated with Theorem 1

U3 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

T2(b2d2qδ) 2T2(b2q+1dγ) 2T2(bq+2dqδ)

T2(abcqdqδ)
T2(aq+1bqdγ)

+T2(aqbq+1cγ)
T2(abq+1cqδ)

+T2(aq+1bdqδ)

T2(a2c2qδ) 2T2(a2q+1cγ) 2T2(aq+2cqδ)

T2(b2cqdqδ)
+T2(abd2qδ)

2T2(aqbq+1dγ)
+T2(ab2qdγ)
+T2(b2q+1cγ)

2T2(abq+1dqδ)
+T2(aqb2dqδ)
+T2(bq+2cqδ)

T2(b2cqdqβqδ)
+T2(abd2qβδ)

2T2(aqbq+1dβqγ)
+T2(ab2qdβγ)
+T2(b2q+1cβγ)

2T2(abq+1dqβδ)
+T2(aqb2dqβqδ)
+T2(bq+2cqβqδ)

T2(a2d2qδ)
+T2(b2c2qδ)

2T2(a2qbdγ)
+2T2(ab2qcγ)

2T2(aqb2cqδ)
+2T2(a2bqdqδ)

T2(a2d2qβδ)
+T2(b2c2qβqδ)

2T2(a2qbdβqγ)
+2T2(ab2qcβγ)

2T2(aqb2cqβqδ)
+2T2(a2bqdqβδ)

T2(abc2qδ)
+T2(a2cqdqδ)

2T2(aq+1bqcγ)
+T2(a2q+1dγ)
+T2(a2qbcγ)

2T2(aq+1bcqδ)
+T2(aq+2dqδ)
+T2(a2bqcqδ)

T2(abc2qβqδ)
+T2(a2cqdqβδ)

2T2(aq+1bqcβγ)
+T2(a2q+1dβqγ)
+T2(a2qbcβqγ)

2T2(aq+1bcqβqδ)
+T2(aq+2dqβδ)
+T2(a2bqcqβδ)
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The End

Thank you

for your attention
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