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Consider Fm�n
q w.r.t. the rank distance dR defined by

dR(A;B) = rk(A� B).(Fm�n
q ; dR) is a (translation-invariant) metric space.

Definition
An (m; n;M; d) rank distance code is a set C � Fm�n

q with jCj = M
and dR(A;B) � d for distinct A;B 2 C.

For technical reasons we assume m � n in what follows.

Singleton bound for rank distance codes
For an (m; n;M; d) rank distance code we have M � qm(n�d+1).
Proof.
Suppose A;B 2 C agree in the first n � d + 1 columns.=) rk(A � B) � d � 1 =) A = B
Hence the projection map C ! Fm�(n�d+1)

q is one-to-one.
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SINGLETON Systems alias
GABIDULIN codes

If equality holds in the Singleton bound, then C is referred to as a
maximum rank distance code or MRD code; more precisely:

Definition
Suppose 1 � k � n � m are integers. An (m; n; k) maximum rank
distance code (MRD code) is a set C � Fm�n

q with jCj = qmk and
dR(A � B) � n � k + 1 for distinct A;B 2 C.

(Without the assumption m � n we would have to writejCj = qmaxfm;ng�k and dR(A � B) � minfm; ng � k + 1.)

DELSARTE 1978 (and independently GABIDULIN 1985, ROTH

1991) proved the following

Theorem
Linear (m; n; k) MRD codes exist for all choices of m; n; k.
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Proof.
Consider the columns of A 2 Fm�n

q as coordinate vectors w.r.t. a
basis f�1; : : : ; �mg of Fqm =Fq .

This gives an Fq -linear isomorphism Fm�n
q

�= (Fqm )n and induces
a map C 7! C from flinear codes of length n over Fqm g tofm� n rank distance codes over Fq g.

Let C be the linear code of length n over Fqm generated by0BBB� �1 �2 : : : �n�q
1 �q

2 : : : �q
n

...
...

...�qk�1

1 �qk�1

2 : : : �qk�1

n

1CCCA
Then jCj = qmk and rkhc1; : : : ; cniFq � n� k + 1 for every nonzero
c = (c1; : : : ; cn) 2 C.

The latter follows from ci = L(�i) for 1 � i � n, where
L(X ) = a0X + a1Xq + � � �+ ak�1Xqk�1 2 Fqm [X ℄ is a nonzero
linearized polynomial (REED-SOLOMON type construction).
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A Characteristic Property of
MRD Codes

Proposition
For C � Fm�n

q the following are equivalent:

(i) C is an (m;n; k) MRD code

(ii) For every U 2 Fk�m
q with rk U = k and every V 2 Fk�n

q
there exists exactly one G 2 C such that UG = V.

Viewing C as a set of linear transformations from Fm
q to Fn

q ,
Part (ii) says:

Every linear map g : U ! Fn
q , defined on a

k-dimensional subspace U of Fm
q , has a unique

extension g 2 C. (“Every k-dimensional subspace
of Fm

q is an information subspace.”)

Compare with the case of MDS codes (where “every set of
k coordinates is an information set”).
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Random Coding

Random m � n matrix over Fq

A random variable ~G with values in Fm�n
q

Only the distribution Pf~G = Gg, G 2 Fm�n
q matters

Random linear code ensemblefu~G : u 2 Fm
q g Generator matrix definitionfv 2 Fn

q : ~HvT = 0g Parity-check matrix definition

Examples� Pf~G = Gg = q�mn for all G 2 Fm�n
q (equiprobable

generator matrix ensemble)� Equiprobable parity-check matrix ensemble� Gallager’s low-density parity-check (LDPC) code
ensembles
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Good Random Matrices

A linear code ensemble fu~G : u 2 Fm
q g is good in the sense

of the asymptotic Gilbert-Varshamov (GV) bound, provided
it has the following

Fundamental property

Pfu~G = vg = q�n 8u 2 Fm
q n f0g;8v 2 Fn

q :
Definition
A random m � n matrix ~G is said to be good if u~G is
uniformly distributed over Fn

q for every u 2 Fm
q n f0g.

Generalization~G is said to be k-good, 1 � k � minfm;ng, if U~G is
uniformly distributed over Fk�n

q for every rank-k matrix
U 2 Fk�m

q .
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Small Support Size

Example
The equiprobable generator matrix ensemble is k-good for
1 � k � minfm;ng, since#fG 2 Fm�n

q ;UG = Vg = q(m�k)n
for all U 2 Fk�m

q with rk U = k and all V 2 Fk�n
q .

Every linear map g : U ! Fn
q , defined on a

k-dimensional subspace U of Fm
q , has the same

number of (linear) extensions g : Fm
q ! Fn

q .

The support size of this ensemble is qmn (“large”).

Problem
Determine the smallest support size of a k-good random
m� n-matrix over Fq , and give a characterization in the
extremal case.



Maximum
Rank Distance

Codes with
Applications

Thomas
Honold

Maximum
Rank
Distance
Codes

Random
Matrices over
Finite Fields

Homogeneous
Weights on
Matrix Spaces

Geometry
over Finite
Matrix Rings

Small Support Size—Solution

Theorem (YANG-H. 2011)

A k-good random m � n-matrix ~G over Fq has support size
at least qmaxfm;ng�k . Equality holds iff ~G is uniformly
distributed over an (m;n; k) MRD code.

Sketch of proof.
We only consider the case k = 1.

Suppose that Pfu~G = vg = q�n for all u 2 Fm
q n f0g, v 2 Fn

q .

The case m � n
This case is easy: The support size must be at least qn

(why?), and the random m � n-matrix unformly distributed
over an (m;n;1) MRD code gives equality.
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Proof cont’d.

The case m > n
This case is not easy. We have based the proof on the
following

Lemma
A random m � n matrix over Fq is good iff its transpose (a
random n �m matrix over Fq ) is good.

The condition implies Pfu~GvT = ag = q�1 for all
u 2 Fm

q n f0g, v 2 Fn
q n f0g, a 2 Fq .

From this one can conclude that ~GvT must be uniformly
distributed as well (over Fm

q ).

Reason
The rational qm � (qm + qm�1 + � � �+ q) incidence matrix of
the point-hyperplane design of AG(m; Fq ) has full rank qm.

The lemma provides the key step in the proof of our
theorem.
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Structure of k -good random
matrices

Observation
The set of all k-good random m � n-matrices over Fq forms
a convex polytope in qmn-dimensional Euclidean space.

Open Problem
Determine the vertices of this polytope.

Every (m;n; k) MRD code determines a vertex, but there
are other vertices.
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Rm denotes the ring of m �m matrices over Fq (so as a set
Rm = Fm�m

q ).

The space Fm�n
q of rectangular m � n matrices over Fq

forms an Rm-Rn bimodule relative to the action(A;B) Æ X = AXB (A 2 Rm, B 2 Rn, X 2 F m�n
q ).

Folklore
There is a 1-1 correspondence between right submodules
of Fm�n

q and subspaces of Fm
q . The map which sends a right

submodule U to the sum of all column spaces of all matrices
A 2 U is such a bijection.
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Definition
The left homogeneous weight w` : Fm�n

q ! R is uniquely defined
by the following axioms:

(H1) w`(0) = 0;

(H2) w`(UX) = w`(X) for all X 2 Fm�n
q , U 2 R�

m ;

(H3)
P

X2U w`(X) = jUj for all cyclic left submodules U 6= f0g ofFm�n
q .

The right homogeneous weight wr : Fm�n
q ! R is defined in an

analogous fashion.
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Definition
The left homogeneous weight w` : Fm�n

q ! R is uniquely defined
by the following axioms:

(H1) w`(0) = 0;

(H2) w`(UX) = w`(X) for all X 2 Fm�n
q , U 2 R�

m ;

(H3)
P

X2U w`(X) = jUj for all cyclic left submodules U 6= f0g ofFm�n
q .

The right homogeneous weight wr : Fm�n
q ! R is defined in an

analogous fashion.

Remarks� The definition makes sense for arbitrary finite modules RM
(over a finite ring R).� The following key property of finite modules is used in the
definition: Rx = Ry =) R�x = R�y .� In the case m � n all left submodules of Fm�n

q are cyclic, so
that (H3) holds for all left submodules U of Fm�n

q .
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Explicit Formula for w`, wr

w`(X) = 1� (�1)rk X(qm � 1)(qm�1 � 1) � � � (qm�rk X+1 � 1) ;
and similarly for wr.

From this it follows that w` = wr () m = n.
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Explicit Formula for w`, wr

w`(X) = 1� (�1)rk X(qm � 1)(qm�1 � 1) � � � (qm�rk X+1 � 1) ;
and similarly for wr.

From this it follows that w` = wr () m = n.

Observation
w` (and similarly wr) can be scaled by a constant 
 > 0 to
turn it into a probability distribution on Fm�n

q . The
normalized version w` = 
w` satisfies (H1), (H2), andP

X2Fm�n
q

w`(X) = 
jUj for all cyclic left submodules U 6= f0g
of Fm�n

q in place of (H3).
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Explicit Formula for w`, wr

w`(X) = 1� (�1)rk X(qm � 1)(qm�1 � 1) � � � (qm�rk X+1 � 1) ;
and similarly for wr.

From this it follows that w` = wr () m = n.

Observation
w` (and similarly wr) can be scaled by a constant 
 > 0 to
turn it into a probability distribution on Fm�n

q . The
normalized version w` = 
w` satisfies (H1), (H2), andP

X2Fm�n
q

w`(X) = 
jUj for all cyclic left submodules U 6= f0g
of Fm�n

q in place of (H3).

Lemma
 = c�1
mn with

cmn =PX2Fm�n
q

w`(X) = qmn � (�1)mqm(m+1)=2
�n�1

m

�
q.
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Theorem
If m � n then the normalized left homogeneous weight w`
defines a k-good random matrix on Fm�n

q for 1 � k � n � 1.
Similarly, if m � n then wr defines a k-good random matrix
on Fm�n

q for 1 � k � m� 1.
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Idea of proof.
Since w`(X) = wr(XT ) for X 2 Fn�m

q , we can assume m � n (so
that every right submodule of Fm�n

q is cyclic).
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Idea of proof.
Since w`(X) = wr(XT ) for X 2 Fn�m

q , we can assume m � n (so
that every right submodule of Fm�n

q is cyclic).

wr : Fm�n
q ! R gives rise to a k -good random matrix if and only if

for every B 2 Fk�m
q with rk(B) = k and every Y 2 Fk�n

q the
following equation holds:X

X2Fm�n
q

BX=Y

wr(X) = q�kn:U = fX 2 Fm�n
q ;BX = 0g is a right submodule of Fm�n

q of sizejUj = q(m�k)n;U 6= f0g provided that 1 � k � m � 1.
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Idea of proof.
Since w`(X) = wr(XT ) for X 2 Fn�m

q , we can assume m � n (so
that every right submodule of Fm�n

q is cyclic).

wr : Fm�n
q ! R gives rise to a k -good random matrix if and only if

for every B 2 Fk�m
q with rk(B) = k and every Y 2 Fk�n

q the
following equation holds:X

X2Fm�n
q

BX=Y

wr(X) = q�kn:U = fX 2 Fm�n
q ;BX = 0g is a right submodule of Fm�n

q of sizejUj = q(m�k)n;U 6= f0g provided that 1 � k � m � 1.

The proof is completed by showing thatX
X2U+A

wr(X) = q�mnjU + Aj = q�kn

for every coset U + A of every (cyclic) right submodule U 6= f0g ofFm�n
q (a strong variant of (H3)).
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Example
We consider the case of binary 2� 3 matrices.



Maximum
Rank Distance

Codes with
Applications

Thomas
Honold

Maximum
Rank
Distance
Codes

Random
Matrices over
Finite Fields

Homogeneous
Weights on
Matrix Spaces

Geometry
over Finite
Matrix Rings

Example
We consider the case of binary 2� 3 matrices.

The space F2�3
2 contains 21 matrices of rank 1 (parametrized as

uT v with u 2 F2
2 n f0g, v 2 F3

2 n f0g) and 42 matrices of rank 2.



Maximum
Rank Distance

Codes with
Applications

Thomas
Honold

Maximum
Rank
Distance
Codes

Random
Matrices over
Finite Fields

Homogeneous
Weights on
Matrix Spaces

Geometry
over Finite
Matrix Rings

Example
We consider the case of binary 2� 3 matrices.

The space F2�3
2 contains 21 matrices of rank 1 (parametrized as

uT v with u 2 F2
2 n f0g, v 2 F3

2 n f0g) and 42 matrices of rank 2.

The normalized left and right homogeneous weights w`, wr onF2�3
2 are given by the following tables:

rk(X) 0 1 2
w`(X) 0 1

42
1
84

rk(X) 0 1 2
wr(X) 0 1

56
5

336
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Example
We consider the case of binary 2� 3 matrices.

The space F2�3
2 contains 21 matrices of rank 1 (parametrized as

uT v with u 2 F2
2 n f0g, v 2 F3

2 n f0g) and 42 matrices of rank 2.

The normalized left and right homogeneous weights w`, wr onF2�3
2 are given by the following tables:

rk(X) 0 1 2
w`(X) 0 1

42
1
84

rk(X) 0 1 2
wr(X) 0 1

56
5

336

w` is a probability distribution on F2�3
2 and satisfies (H1), (H2), but

it does not yield a 1-good random 2� 3 matrix over F2 .
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Example
We consider the case of binary 2� 3 matrices.

The space F2�3
2 contains 21 matrices of rank 1 (parametrized as

uT v with u 2 F2
2 n f0g, v 2 F3

2 n f0g) and 42 matrices of rank 2.

The normalized left and right homogeneous weights w`, wr onF2�3
2 are given by the following tables:

rk(X) 0 1 2
w`(X) 0 1

42
1
84

rk(X) 0 1 2
wr(X) 0 1

56
5

336

w` is a probability distribution on F2�3
2 and satisfies (H1), (H2), but

it does not yield a 1-good random 2� 3 matrix over F2 .

wr defines, by Th. 11, a 1-good random matrix ~A 2 F2�3
2 . This

means that every coset of a right submodule U of F2�3
2 of sizejUj = 8 (which is one of the modules U1, U2, U3 corresponding to

column spaces generated by
�

1
0

�
,
�

0
1

�
,
�

1
1

�
, respectively) has

total weight 1=8. For the submodules Ui this is obvious, since they
contain the all-zero 2� 3 matrix and 7 matrices of rank 1 and
weight 1=56. For the remaining cosets Ui + A with A =2 Ui it
implies that each such coset contains 2 matrices of rank 1 and 6
matrices of rank 2.
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Definition
The right affine space of m� n matrices over Fq , denoted
by AGr(m;n; Fq ), is the lattice of cosets (including the empty
set) of right Rn-submodules of Fm�n

q . A coset A+ U is called
an r -dimensional flat (r -flat) if U �= Fr�n

q as an Rn-module.
(Equivalently, the subspace of Fm

q corresponding to U has
dimension r .)

Flats of dimension 0, 1, 2, m � 1 are called points, lines,
planes, and hyperplanes, respectively. The whole geometry
(i.e. the flat Fm�n

q ) has dimension m.

Left affine spaces AG`(m;n; Fq ) are defined similarly.
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Remark
In the Geometry of Matrices (after L.K. HUA and Z.X. WAN) one
considers the space Fm�n

q equipped with the collinearity relation
rk(A � B) = 1. Lines are 1-dimensional over Fq (and are
intersections of left and right 1-flats in our sense).

Example (The plane AGr(2; 2; F2))�
0 0
0 0

� �
1 0
0 0

� �
0 1
0 0

� �
1 1
0 0

��
0 0
1 0

� �
1 0
1 0

� �
0 1
1 0

� �
1 1
1 0

��
0 0
0 1

� �
1 0
0 1

� �
0 1
0 1

� �
1 1
0 1

��
0 0
1 1

� �
1 0
1 1

� �
0 1
1 1

� �
1 1
1 1

�
There are 16 points, 12 lines (3 parallel classes of size 4), and 8
MRD codes (2 parallel classes of size 4).

The 12 lines and 8 MRD codes impose on F2�2
2 the structure of

the affine plane of order 4.
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The Link with k -Good Random
Matrices

Definition
Let k ;m; n be positive integers with k � minfm; ng. A setA � Fm�n

q is said to be k-dense if UA = Fk�n
q for every full-rank

matrix U 2 Fk�m
q .

As in the case of “good” we use the terms 1-dense and dense
interchangeably.

Lemma
Let A be a nonempty subset of Fm�n

q and ~A the random m � n
matrix uniformly distributed over A.

(i) A is k-dense if and only if it meets every (m � k)-flat of
AGr(m; n; Fq ) in at least one point, i.e., A is a blocking set
with respect to (m � k)-flats in AGr(m; n; Fq ).

(ii) ~A is k-good if and only if A meets every (m � k)-flat of
AGr(m; n; Fq ) in the same number, say �, of points.
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The Minimum Size of Blocking
Sets in AGr(m; n; Fq )�k (m; n; Fq ) denotes the minimum size of a blocking set with

respect to (m � k)-flats in AGr(m; n; Fq ) (respectively, the
minimum size of a k -dense subset of Fm�n

q ).

Theorem (The case m � n)
For k � m � n we have �k (m; n; Fq ) = qkn, and a subsetA � Fm�n

q of size qkn is k-dense if and only if it is a (not
necessarily linear) (m; n; k) MRD code.

The discrete version of the symmetry property of k -good random
matrices is

Theorem (Left-right symmetry)
If A � Fm�n

q meets every (m � k)-flat of AGr(m; n; Fq ) in the same
number, say �, of points, then the same is true for the (n� k)-flats
of AG`(m; n; Fq ) (the corresponding number being �0 = �qk(n�m)).
MRD codes have � = 1 (for m � n) resp. �0 = 1 (for m � n).
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The Case m > nTheorem

(i) �1(m; 1; q) = 1 + m(q � 1) for all m � 2.

(ii) For 1 � k � n < m we have the bounds
qkn < �k (m; n; Fq ) < qkm.

(iii) �1(3; 2; F2 ) = 6;

(iv) �2(3; 2; F2 ) = 22.

Notes� �1(m; 1; q) is the known (JAMISON 1977,
BROUWER-SCHRIJVER 1978) minimum size of a blocking set
with respect to hyperplanes in the ordinary affine space
AG(m; Fq ).� The bounds in (ii) are rather weak and serve only to refute
the obvious guesses “�k(m; n; Fq ) = qn” or
“�k(m; n; Fq ) = qm”.� Parts (iii), (iv) required a fair amount of work (but could be
done by hand).
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Combinatorial Facts about
AGr(3; 2; F2)� 64 points� 112 lines (7 parallel classes of size 16)� 28 planes (7 parallel classes of size 4)� Planes are isomorphic to AGr(2;2; F2).� Two (distinct) collinear points are incident with 3 planes.� Two non-collinear points are incident with a unique

plane.
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A blocking set with respect to planes of size 60�1 0
0 1
0 0

1A ;0�1 1
1 0
0 0

1A ;0�0 1
1 1
0 0

1A ;0�0 0
1 0
1 0

1A ;0�0 1
0 0
0 1

1A ;0�0 0
0 0
1 1

1A
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Construction of a blocking set of
size 22

Use AG`(3;2; F2) � AG(2; F8).
Lines of AG(2; F8) fall into two types:� Lines of AG`(3;2; F2) (three parallel classes,

represented by F8(1;0), F8(0;1), F8(1;1))� MRD codes (six parallel classes, represented byMi = F8(1; �i), 1 � i � 6).A =M1 [M2 [M4 is the required blocking set.

The proof uses counting and the property that A meets
every line of AGr(3;2; F2) in either 1 or 3 points.
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Open Problem
Further study of the Maximal Arc Problem for AGr(m;n; Fq ).
Reference

S. Yang and T. Honold.
Good random matrices over finite fields.
Submitted for publication, May 2011.
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Thank You
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