
Advances in Mathematics of Communications Web site: http://www.aimSciences.org
Volume X, No. 0X, 200X, X–XX

THE AUTOMORPHISM GROUPS OF LINEAR CODES AND
CANONICAL REPRESENTATIVES OF THEIR SEMILINEAR

ISOMETRY CLASSES

Thomas Feulner

Department of Mathematics, University of Bayreuth
95440 Bayreuth, Germany

Abstract. The main aim of the classification of linear codes is the evalua-
tion of complete lists of representatives of the isometry classes. These classes
are mostly defined with respect to linear isometry, but it is well known that
there is also the more general definition of semilinear isometry taking the field
automorphisms into account. This notion leads to bigger classes so the data
becomes smaller. Hence we describe an algorithm that gives canonical repre-
sentatives of these bigger classes by calculating a unique generator matrix to
a given linear code, in a well defined manner.

The algorithm is based on the partitioning and refinement idea which is
also used to calculate the canonical labeling of a graph [12] and it similarly
returns the automorphism group of the given linear code. The time needed by
the implementation of the algorithm is comparable to Leon’s program [10] for
the calculation of the linear automorphism group of a linear code, but it ad-
ditionally provides a unique representative and the automorphism group with
respect to the more general notion of semilinear equivalence. The program can
be used online under http://www.algorithm.uni-bayreuth.de/en/research/

Coding_Theory/CanonicalForm/index.html.

1. Introduction

A (linear) [n, k, d]q-code is a k-dimensional subspace of Fn
q such that any two

different codewords of C have Hamming distance dHam at least d, i.e. they differ in
at least d positions, and there is a pair whose distance is equal to d. The parameter
d is called the minimum distance of the code C. The Hamming weight wt(c) of a
codeword c ∈ C is the number of nonzero entries, i.e. wt(c) := dHam(c, 0).

A matrix Γ ∈ Fk×n
q whose rows form a basis of the [n, k, d]q-code C is a generator

matrix of the code C. The set of all generator matrices is constructed via left
multiplication from an arbitrary generator matrix by all invertible (k× k)-matrices
A ∈ GLk(q). A mapping ι : Fn

q → Fn
q is called isometry, if it respects the Hamming

metric. A mapping σ : Fn
q → Fn

q is called semilinear, if there exists an automorphism
α of Fq such that, for all u, v ∈ Fn

q , κ ∈ Fq we have σ(u + v) = σ(u) + σ(v) and
σ(κu) = α(κ)σ(u).

Two codes C,C ′ are equivalent, if there is a semilinear isometry ι : Fn
q → Fn

q

with ι(C) = C ′. Such codes have the same error-correcting capability, and so
we only need representatives of the equivalence classes. For this purpose we derive
canonical generator matrices of these representatives. In Section 2 we formulate the

2000 Mathematics Subject Classification: Primary: 05E20; Secondary: 20B25, 94B05.
Key words and phrases: automorphism group, canonization, coding theory, error-correcting

code, group action, representative, semilinear isometry.

1 c©200X AIMS-SDU

http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory/CanonicalForm/index.html
http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory/CanonicalForm/index.html

2 Thomas Feulner

equivalence classes as orbits of a group action from the left on the set of generator
matrices.

In Section 4 the group action will be split into two actions. One action is the
permutation of coordinates and therefore an action of the symmetric group Sn. It
acts on the orbits (on the set of all generator matrices) of a second group which
consists of triples (A,ϕ;α) ∈ (GLk(q) × F∗q

n) o Aut(Fq)1, where F∗q denotes the
set of units and Aut(Fq) the group of field automorphisms of Fq. We use this
decomposition of the group action since only the permutational part really needs
an expensive backtracking procedure for the canonization. We call the second action
the inner one, and we will show that the canonization is straightforward. In fact,
it is an easy minimization algorithm that amounts to choosing a lexicographically
smallest element.

Section 5 describes how to manage the outer group action, i.e. the action of the
symmetric group Sn. An automorphism of a linear code C is a semilinear isometry
which maps C onto itself. These mappings form a subgroup Aut(C) of the group
of all semilinear isometries, the stabilizer subgroup of C. The automorphism group
is used as a tool for pruning large parts of the search tree. Another very useful tool
for pruning is a homomorphism of group actions, introduced in Section 3, which
corresponds to the partitioning and refinement idea [11, 12].

The algorithm that we describe is also based on a backtrack search through the
search tree consisting of all elements of the acting group, but in contrast to Leon’s
(automorphism group) algorithm for linear codes [10] we are just using permuta-
tions instead of monomial mappings, although we apply the more general notion of
semilinear instead of linear isometry. Furthermore, and even more important, this
algorithm can also be used to calculate a unique representative within the semilinear
isometry class of a given linear code.

There are some other approaches to solve the code equivalence problem. We men-
tion Sendrier [13] and Bouyukliev [3]. They also do not obtain canonical representa-
tives, but this is urgently needed if we want to built up databases of representatives2

for each isometry class of [n, k, d]q-codes. Storing canonical representatives in these
databases reduces the problem of isometry test to the comparison of two generator
matrices instead of testing semilinear isometry for each pair of elements. Using
the more general notion of semilinear isometry reduces the size of these databases
approximately3 by the factor r := |Aut(Fq)|.

2. Code Equivalence

Two linear codes C1, C2 ≤ Fn
q are linearly isometric if there is a linear isometry

ι : Fn
q → Fn

q mapping C1 onto C2. This isometry ι can also be expressed as an
element (ϕ;π) ∈ F∗q

n o Sn of the group of monomial permutations. The semidirect
product F∗q

n o Sn acts on Fn
q via

(ϕ;π)(v0, . . . , vn−1) :=
(
ϕ0vπ−1(0), . . . , ϕn−1vπ−1(n−1)

)
and the multiplication within this group is defined by

(ϕ;π)(ψ;σ) := (ϕψπ, πσ) where (ϕψπ)i := ϕiψπ−1(i), i = 0, . . . , n− 1.

1a semidirect product of groups; the multiplication is defined in Section 4
2This would improve the databases [6] and [15], which give only existence information and

information about the construction methods for linear codes of a given parameter set [n, k, d]q .
3In [1] numbers of linear and semilinear isometry classes are given.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 3

If q = pr is not a prime, then the Frobenius automorphism τ : Fq → Fq, x 7→ xp ap-
plied on each coordinate of Fn

q preserves the Hamming distance, too. Furthermore,
linear subspaces are mapped to linear subspaces. Therefore, we include the group
of field automorphisms to a more general notion of equivalence of linear codes. We
call two codes C1, C2 equivalent or semilinearly isometric if and only if there is
a field automorphism α ∈ Aut(Fq) and a linear isometry ι : Fn

q → Fn
q such that

ι(α(C1)) = C2. All these mappings again form a group which is isomorphic to
F∗q

n o (Aut(Fq)× Sn), where the multiplication of elements is defined by

(ϕ; (α, π))(ψ; (β, σ)) := (ϕ · α(ψπ); (αβ, πσ))

It acts in a natural way on Fn
q and on the set L(Fn

q) := {C | C ≤ Fn
q } of linear

subspaces as well.
It is well-known that for n ≥ 3 the set of all isometries of Fn

q mapping subspaces
to subspaces is the group of semilinear isometries, see [1]. Therefore, the notion of
semilinear isometry of linear codes is the most general which can be expressed as a
group action on the set of linear subspaces (with respect to the natural action).4

Finally, we want to represent the codes by their generator matrices. Let Fk×n,k
q

denote the set of all (k×n)-matrices of rank k, i.e. the set of generator matrices of
(linear) [n, k]q-codes.

Since all generator matrices of a given code can be reached by the left multi-
plication of an arbitrary generator matrix of the code by all invertible matrices
A ∈ GLk(q), we add this group in an appropriate way to the one previously con-
structed. We end up in the group action of (GLk(q) × F∗q

n) o (Aut(Fq) × Sn) on
the set of all (k×n)-matrices Γ ∈ Fk×n,k

q of rank k. The group action is defined by

((A,ϕ); (α, π))Γ := A ((ϕ;π)α(Γ))

where α is applied to each entry and (ϕ;π) is a linear isometry mapping the rows
to a basis of another linear subspace. The multiplication of two group elements is
defined by ((A,ϕ); (α, π)) · ((B,ψ); (β, σ)) := ((Aα(B), ϕ · α(ψπ)); (αβ, πσ)).

3. Groups and Group Actions

Let G be a group acting on some non-empty set X. The orbit of an element
x ∈ X will be denoted by Gx and the set of all orbits by G\\X := {Gx | x ∈ X}.

Fact 3.1 (Homomorphism Principle, Laue [9]). Let G be a group acting on a set
X and H another group acting on Y with surjective mappings θ : X → Y and
ϕ : G → H. Furthermore let the pair (θ, ϕ) be a homomorphism of group actions,
i.e. θ(gx) = ϕ(g)θ(x), ∀ g ∈ G, x ∈ X. Then

1. the stabilizer subgroup Gx of x is a subgroup of ϕ−1(Hθ(x)),
2. if TH\\Y is a transversal of H\\Y , i.e. a minimal, but complete set of orbit

representatives, then

TG\\X =
⋃

y∈TH\\Y

Tϕ−1(Hy)\\θ−1(y)

is a transversal of G\\X.

4A non-semilinear isometry must map at least one subspace onto a non-linear block code,
violating the definition of a group action. Of course, its still possible that there are semilinearly
nonisometric codes and an isometry of Fq mapping one code onto the other.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

4 Thomas Feulner

We shall mostly apply this theorem with one group G acting on two different
sets, where the second set is smaller or easier to handle. A mapping f : X → Y
where (f, id) is a homomorphism of group actions, is called G-homomorphism.

The most common way of getting transversal elements of a group action of G on
X, is to calculate the smallest elements of the orbits according to some total order
on the set X. This would also be possible in our case of a group acting on the set
of (k × n)-matrices over Fq. But a naive approach would have to calculate all the
matrices within the same orbit in order to decide which one is the minimum.

The Homomorphism Principle provides another transversal TG\\X of the action of
G on X. This choice of representatives might be not so intuitive, but the calculation
of the unique orbit representative t ∈ TG\\X in the orbit Gx of an element x ∈ X
becomes much more easier. This choice of representatives corresponds to another
total order on the set X

x � x′ :⇐⇒ θ(x) < θ(x′) ∨ (θ(x) = θ(x′) ∧ x ≤ x′) ,
where we supposed the transversals of minimal elements to be used in both steps
of the theorem. The canonization algorithm is as follows:

1. calculate an element g0 ∈ G whose image ϕ(g0) maps θ(x) to the smallest
element y ∈ TH\\Y in the same orbit,

2. calculate an element g1 ∈ ϕ−1 (Hy) mapping g0x to its minimal representative
g1g0x in the orbit

(
ϕ−1(Hy)

)
g0x.

Using homomorphisms of group actions reduces the overall complexity about log-
arithmically. Considering this, we will use the Homomorphism Principle, although
it forces us to return transversal elements which are depending on the choice of
(θ, ϕ).

Of course, the calculation of orbit representatives in H\\Y and ϕ−1(Hy)\\θ−1(y)
can be further improved by using this idea iteratively.

Fact 3.2. Let N be a normal subgroup of a group G, which acts on a set X. Then
the factor group G/N := {gN | g ∈ G} naturally acts on the set of orbits N\\X
and there is a bijection Φ(Gx) := (G/N)(Nx) between the orbits of G on X and
the orbit set (G/N)\\(N\\X).

The following lemma provides the basis to split the group action of semilinear
isometries on generator matrices.

Lemma 3.3. Let N o (G ×H) be a semidirect product of groups, where the right
factor is a direct product of two groups G,H. We assume that the group No(G×H)
is acting on a set X. Then there is a natural bijection between the orbit sets

Φ : (N o (G×H))\\X → H\\ ((N oG)\\X)

(N o (G×H))x 7→ H((N oG)x).

We can calculate a transversal element t ∈ (N o (G×H))x in two steps:
1. Calculate the transversal element ω ∈ H((NoG)x) of the outer group action.
2. Take the representative t ∈ ω ∩ T(NoG)\\X of the inner group action, i.e.

(N oG) acting on X.

Proof. The group can be expressed equivalently by (N o G) o H and the group
(N oG) ' (N oG)o {1H} on the left is a normal subgroup of the outer semidirect
product. Furthermore, the factor group ((N oG) oH) /(N oG) is isomorphic to
H. So Lemma 3.2 provides the bijection.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 5

We use the Homomorphism Principle 3.1 with the projection on H, i.e.
ϕ : N o (G × H) → H and the orbit map: θ : X → (N o G)\\X,x 7→ (N o G)x
to show the second part. These maps are surjective and they respect the group
actions. For the transversal element ω we conclude that ϕ−1(Hω) ⊇ ϕ−1({idH}) =
(N oG)o {idH} and θ−1(ω) = ω. Therefore the action of ϕ−1(Hω) is transitive on
θ−1(ω) and we just have to pick the orbit representative t ∈ ω of the inner group
action.

4. Splitting the group action

Applying Lemma 3.3 to the action of (GLk(q)×F∗q
n)o (Aut(Fq)×Sn) on Fk×n,k

q

splits the group action into two parts and gives a first algorithmic instruction for the
calculation of a canonical element. This will be used in Section 4.2.1 after showing
that – in our case – the calculation of transversal elements of the inner group action
is easily achieved.

Corollary 1. There is a bijection between the orbit sets of the group(
(GLk(q)× F∗q

n) o (Aut(Fq)× Sn)
)

acting on the set Fk×n,k
q and the group Sn act-

ing on
(
(GLk(q)× F∗q

n) o Aut(Fq)\\Fk×n,k
q

)
.

Since the parameters n, k, q are fixed within the whole article, we suppress them
for the sake of clarity in the notion of the inner group according to this break-up
and define

G(sl) := (GLk(q)× F∗q
n) o Aut(Fq).

The multiplication of two elements ((A,ϕ);α), ((B,ψ);β) is defined by

((A,ϕ);α)((B,ψ);β) := ((Aα(B), ϕα(ψ));αβ).

Of course, we can decompose the group of linear isometries analogously using
the notation G(l) := GLk(q)× F∗q

n for the normal subgroup.

4.1. The inner group action. The canonization algorithm for this group action
is a generalization of the calculation of the reduced row echelon form of an arbitrary
(k × n)-matrix from the left to the right, where we additionally have to take the
multiplication of the columns with nonzero field elements and the field automor-
phisms into account. In fact, we use the Gaussian elemination as a subprocedure.
The only difference is that the columns which cannot be mapped to unit vectors
will be further minimized.

The group action of G(sl) also induces an action on the matrices with i ≤ n
columns by taking the first i entries of the vector ϕ ∈ F∗q

n to define the multiplication
on the columns. The projection

Πi : Fk×n
q → Fk×i

q , (γT
0 , . . . , γ

T
n−1) 7→ (γT

0 , . . . , γ
T
i−1).

is compatible with these group actions and therefore a G(sl)-homomorphism.
We assume that the field Fq is totally ordered in a canonical way (see Section 6)

by some fixed order ≤ with 0 < 1 ≤ ξ, ∀ ξ ∈ F∗q . The lexicographical order induces
a total order on Fn

q . Matrices are interpreted as vectors of columns of length k. The
order of these k-dimensional column vectors is the colexicographical order, while the
order of these n-dimensional vectors of columns is the lexicographic one:

(Fk×n
q , <) := ((Fk

q , <co)
n
, <lex).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

6 Thomas Feulner

The reason for the choice of the colexicographical order is that in this case the unit
vectors appear in their natural order. We introduce some notion for those matrices
whose projections are minimal in their orbits:

Definition 4.1. Let 1 ≤ i ≤ n. A matrix Γ is said to be i-semicanonical if

Πi(Γ) ≤ Πi(Γ̃), ∀ Γ̃ ∈ G(sl)Γ

Of course, an i-semicanonical matrix is also i′-semicanonical for 1 ≤ i′ ≤ i. The
matrix Γmin is the unique n-semicanonical element in the orbit G(sl)Γ, but for an
arbitrary i there might be other i-semicanonical elements.

We proceed to calculate an (i+1)-semicanonical element inductively starting from
an i-semicanonical Γ(i). The column with index i is minimized under the stabilizer
subgroup G

(sl)

Πi(Γ(i))
of the preceding columns. This is once again an application of

the Homomorphism Principle 3.1.
The first column of a 1-semicanonical representative Γ(1) in the orbit G(sl)Γ must

be either the zero column or the first unit vector eT
0 since we are allowed to multiply

Γ by any invertible matrix. In our notion of the group elements ((A,ϕ);α) ∈ G(sl)

we will often suppress components which are the identity elements of their groups.
It is easy to give a generating set for the group G

(sl)

Π1(Γ(1))
and we will show that

for an arbitrary index i and an arbitrary i-semicanonical representative Γ it remains
easy. The generating set can be stored as a list of parameters (s, p, t) in the following
sense:

Definition 4.2. Let i ∈ {1, . . . , n} and Γ := (γT
0 , . . . , γ

T
n−1) ∈ Fk×n

q be an i-
semicanonical representative of its orbit G(sl)Γ. The projection Πi(Γ) uniquely
defines
• s := rk(Πi(Γ)) = dim(span(γ0, . . . , γi−1)),
• t := min{t′ ∈ N | Aut(Fq)Πi(Γ) = 〈τ t〉} and
• p := {p0, . . . , pl−1} a partition of the set {0, . . . , s − 1} such that for all
j ∈ {0, . . . , i − 1} there exists exactly one index m ∈ {0, . . . , l − 1} such
that supp(γj) ⊆ pm, and p is the smallest5 such partition.

Lemma 4.3. Let Γ ∈ Fk×n
q be an i-semicanonical matrix and define (s, p, t) in the

sense of Definition 4.2. The stabilizer G(sl)
Πi(Γ) of Πi(Γ) is generated by

1. the map τ t ∈ Aut(Fq),
2. all matrices

(
Is A1
0 A2

)
∈ GLk(q) where Is denotes the s × s identity matrix,

A1 ∈ Fs×(k−s)
q and A2 ∈ GLk−s(q),

3. arbitrary column multiplications of zero columns of Γ,
4. all column multiplication vectors ϕ ∈ F∗q

n, with ϕj = 1, ∀ 0 ≤ j < i, and
5. the crossed row-column-multiplications for all pj ∈ p, µ ∈ F∗q :
RC(pj , µ,Γ) := (D,ϕ) ∈ GLk(q)× F∗q

n

D := diag(d0, . . . , dk−1) with dl =

{
µ, l ∈ pj

1, else
, l ∈ {0, . . . , k − 1}

ϕl :=

{
µ−1, supp(γl) ⊆ pj

1, else
, l ∈ {0, . . . , n− 1}

5according to the partial order:
{p0, . . . , pl−1} � {q0, . . . , ql′−1} :⇐⇒ ∀ m ∈ {0, . . . , l − 1} ∃ m′ ∈ {0, . . . , l′ − 1} : pm ⊆ qm′

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 7

Algorithm 1 Semicanonical – Matrix Minimizer for i ∈ {0, . . . , n}

Input: Γ = (γT
0 , . . . , γ

T
n−1) ∈ Fk×n

q

Output: Γ(i) = (γ(i)
0

T
, . . . , γ

(i)
n−1

T
) ∈ G(sl)Γ with Γ(i) i-semicanonical

Output: (s, p, t) defining G(sl)

Πi(Γ(i))
according to Lemma 4.3

1: procedure Semicanonical(i,Γ)
2: if i = 0 then
3: return (Γ, (0, {∅}, 1));// the group G(sl)

4: end if
5: (Γ(i), (s, p, t))← Semicanonical(i−1,Γ);// minimize the first i−1 columns
6: if γ(i)

i−1 /∈ span(γ(i)
0 , . . . , γ

(i)
i−2) then // do Gaussian elimination

7: Calculate B ∈ G(i− 1,Γ(i)) with B
(
γ

(i)
i−1

)T

= eT
s ;

8: Γ(i) ← BΓ(i);
9: (s, p)← (s+ 1, p ∪ {{s}});

10: else
11: union index← −1;
12: for j ← s− 1 to 0 do
13: if Γ(i)

j,i−1 = 0 then
14: continue;// find first nonzero entry in this column
15: end if
16: Determine λ with j ∈ pλ;
17: if union index = −1 then // first nonzero entry
18: union index← λ;

19: γ
(i)
i−1 ← Γ(i)

j,i−1

−1
· γ(i)

i−1; // normalize the column

20: else if λ 6= union index then // the first element in pλ ∩ supp(γ(i)
i−1)

21: Γ(i) ← RC(pλ, (Γ
(i)
j,i−1)

−1,Γ(i)) · Γ(i);// map this entry to 1
22: punion index ← punion index ∪ pλ;// join the subsets of the partition
23: pλ ← ∅;
24: else // minimize with the help of the remaining field automorphisms
25: Choose m ∈ {1, . . . , r

t } : τ tm(Γ(i)
j,i−1) ≤ τ tx(Γ(i)

j,i−1), ∀ x ∈ {1, . . . , r
t };

26: Γ(i) ← τ tm(Γ(i));// minimize this entry
27: t← t ·min{t′ > 0 | τ tt′(Γ(i)

j,i−1) = Γ(i)
j,i−1}; // fix the minimized entry

28: end if
29: end for
30: p← {pl ∈ p | pl 6= ∅};
31: end if
32: return

[
Γ(i), (s, p, t)

]
;

33: end procedure

Proof. The straightforward proof is left to the reader.

Algorithm 1 calculates for each i ∈ {0, . . . , n} an i-semicanonical generator ma-
trix Γ(i). The case i = 0 is added for technical reasons. Furthermore it returns the
parameter set (s(i), p(i), t(i)) which uniquely defines the stabilizer G(sl)

Πi(Γ(i))
.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

8 Thomas Feulner

By this recursion starting with Semicanonical(n,Γ), we calculate the lexico-
graphically smallest representative Γ(n) in the orbit G(sl)Γ for a given Γ ∈ Fk×n

q .

Proof of Algorithm 1. We show by induction that the algorithm is correct. For
i = 0 the algorithm of course returns the right answer. The induction further shows
that the matrix Γ(i) returned by Semicanonical(i−1,Γ) contains the unit vectors
eT
0 , . . . , e

T
s−1, s := rk(Πi−1(Γ(i))) and these columns of course remain unchanged by

the stabilizer.
We have to distinguish two different cases. In the first case, the vector γ(i)

i−1 is not
an element of span(γ(i)

0 , . . . , γ
(i)
i−2) of the preceding columns. The stabilizer returned

by Semicanonical(i−1,Γ) is equal toG(sl)

Πi−1(Γ(i))
containing the invertible matrices(

Is A1
0 A2

)
. Therefore, we can obtain the vector eT

s by the left multiplication with an

appropriate matrix B ∈ G(sl)

Πi−1(Γ(i))
and Πi(BΓ(i)) must be minimal in its orbit. Of

course, s must be increased by one and we have to append the subset {s} to the
partition p.
In the second case, the column with index i−1 is linearly dependent on the preceding
ones. This implies that its entries with index ≥ s must be equal to zero. We search
for the last nonzero entry. If it is found, the column is treated by the block starting
at line 17 which transform this entry to 1 by the multiplication of the column by
the inverse field element.
Now, each set pl of the partiton p which is not equal to punion index and has a
nontrivial intersection with the support supp(γ(i)

i−1) gives us the opportunity to
transform the entry Γ(i)

j,i−1 with j = max(pl∩ supp(γ(i)
i−1)) to 1. This is implemented

by the crossed row-column-multiplication in line 21.
Finally, the remaining subgroup of the field automorphisms allows us to minimize
all the remaining entries in supp(γ(i)

i−1). This step is described in line 25. It is
easy to see that the operations on the parameters (s, p, t) ensures the conditions of
Definition 4.2.

With some minor modifications Algorithm 1 can be used to minimize the columns
in an arbitrary fixed order and to return the applied group element. If we are
interested in a minimal orbit representative of the groupG(l), we just have to remove
the lines 24–28. The parameter t of the stabilizer subgroup becomes redundant in
this case.

Example 1. Let F4 = {0, 1, x, x2} with x2 + x + 1 = 0 and 0 < 1 < x < x2.

We want to calculate Semicanonical(n,Γ(0)) with Γ(0) :=
(

1 x x2 1 x 1
x 0 x2 1 1 1
x 1 0 1 0 x

)
. We call

Algorithm 1 recursively until reaching level i = 1. See also Table 1 for the output
in each step.

For i = 1, 2 we have to follow the instructions given by the block starting at line
7, mapping the first two columns of Γ to the unit vectors eT

0 and eT
1 .

The next recursive call of the algorithm for i = 3 has to use the line 10 and the
following. Starting with j = 1, the if-condition in line 17 is satisfied. We multiply

the column with Γ(3)
1,2

−1
= (x2)−1 = x and set union index = 1. For j = 0 we have

to perform a crossed row-column-multiplication RC
(
p0, (x2)−1,Γ(3)

)
following the

lines starting at 21. Since both nonzero entries of the column (γ(3)
2)T are now equal

to 1 they will not be changed by the Frobenius automorphism τ .

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 9

i performed operation in step i Γ(i) s(i), p(i), t(i)

1

1 0 0
x 1 0
x 0 1

 1 x x2 1 x 1
0 x2 x x2 x x2

0 x 1 x2 x2 0

 1
{{0}}

1

2

1 x2 0
0 x 0
0 x2 1

 1 0 x x2 x2 x2

0 1 x2 1 x2 1
0 0 0 1 x x

 2
{{0}, {1}}

1

3
((

x
1

1

)
, (x2, 1, x, 1, 1, 1)

) 1 0 1 1 1 1
0 1 1 1 x2 1
0 0 0 1 x x

 2
{{0, 1}}

1

4

1 0 1
0 1 1
0 0 1

 1 0 1 0 x2 x2

0 1 1 0 1 x2

0 0 0 1 x x

 3
{{0, 1}, {2}}

1

5
((

x2

x2

1

)
, (x, x, x, 1, x, 1); τ

) 1 0 1 0 x 1
0 1 1 0 1 1
0 0 0 1 1 x2

 3
{{0, 1, 2}}

2

6 (1, 1, 1, 1, 1, x)

1 0 1 0 x x
0 1 1 0 1 x
0 0 0 1 1 1

 3
{{0, 1, 2}}

2
Table 1. Output in Example 1

In step i = 4 we perform a Gaussian elimination. On level i = 5 we first multiply
the column (γ(5)

4)T by x2 resulting in (x, x2, 1)T . The entry x2 is mapped to 1 by the
crossed row-column-multiplication RC

(
p0, (x2)−1,Γ(5)

)
. Now the last two columns

are
(

x2 1
1 1
1 x

)
and the entry x2 can be mapped by the Frobenius automorphism τ to

x. For i = 6, we just multiply the last column by x.

4.2. The outer group action. For the outer group action – the action of the
symmetric group Sn on a set X – there is a well-known approach for canonization
applying partitions and refinements (Leon [11] , McKay [12]). We will follow this
idea.

At first glance, the complexity of the set X in our case might lead to more
difficulties. But as we have seen above, we are able to manage this set of orbits
by n-semicanonical representatives efficiently. Thereby we avoid to take the bigger
group of monomial permutations interpreted as a subgroup of Sn(q−1) to formulate
the backtrack search algorithm [10]. This reduces the size of the search tree and
allows us to use the more appropriate concept of semilinear isometry for the notion
of equivalence of linear codes.

4.2.1. A first naive Algorithm. With the help of Algorithm 1 we are already able to
calculate the automorphism group of a linear code C given by a generator matrix Γ
and a uniquely determined generator matrix Γcan of all semilinearly isometric codes
to C. We just have to apply all permutations π ∈ Sn on the generator matrix Γ
and have to call Semicanonical(n, πΓ) returning a uniquely determined matrix

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

10 Thomas Feulner

Γ(n,π). We define the canonical element according to Lemma 3.3

Γcan := min{Γ(n,π) | π ∈ Sn} = min
((

(GLk(q)× F∗q
n) o (Aut(Fq)× Sn)

)
Γ
)
.

Two different permutations π, σ ∈ Sn with minimal n-semicanonical representa-
tives Γcan = Γ(n,π) = ((A,ϕ); (α, π))Γ and Γcan = Γ(n,σ) = ((B,ψ); (β, σ))Γ give
rise to an automorphism

((A,ϕ); (α, π))−1 · ((B,ψ); (β, σ))

of Γ. The automorphism group Aut(Γ) is generated by all those products together
with the stabilizer of the inner group action

G
(sl)
Γ = ((A,ϕ); (α, π))−1G

(sl)
Γcan((A,ϕ); (α, π)),

which is also returned by Algorithm 1.

4.2.2. Backtrack Search. Of course, the naive approach described above is only
applicable for very small parameters n, because the cardinality of the symmetric
group Sn grows exponentially. The next step is to merge permutations which imply
similar i-semicanonical representatives.

Let G be a subgroup of Sn. We define the pointwise stabilizer of the first i points
by G(i) = G(0,...,i−1) = G0 ∩ . . . ∩Gi−1.

We use the following example to motivate an improved approach, which will
allow us to handle codes with higher length efficiently.

Example 2. Let Γ ∈ F3×n
q with n ≥ 4, where the first four columns are given by

Π4(Γ) =

1 0 1 0
0 1 1 0
0 0 0 1

 .

For any permutation π ∈ Sn which permutes those four columns and maps the last
column (0, 0, 1)T to a position further left the matrix πΓ will contain three linearly
independent columns on its first positions. For this reason the n-semicanonical
representative Γ(n,π) will contain the 3×3 identity matrix on its first three columns.
Due to the lexicographic order on the columns and1 0 1

0 1 1
0 0 0

 <

1 0 0
0 1 0
0 0 1


we conclude that the n-semicanonical representatives Γ(n,π) cannot be equal to Γcan

and we are able to detect this difference by comparing the projections on the first
three columns of any of the 3-semicanonical matrices Γ(3,π) ∈ G(sl)(πΓ):

Π3(Γcan) ≤ Π3(Γ(3,id)) ≤ Π3(Γ) < Π3(Γ(3,π)).

Let σ ∈ S
(3)
n be another permutation. We have Π3(σΓ′) = Π3(Γ′) for any Γ′ ∈

Fk×n
q which implies σΓ(3,π) to be a 3-semicanonical representative in G(sl)(σπΓ).

This information can be used to conclude that σπ does not lead to the canonical
representative, since Π3(Γ(3,σπ)) = Π3(σΓ(3,π)) = Π3(Γ(3,π)) > Π3(Γcan).

As soon as we have found a permutation π ∈ Sn which leads to an i-semicanonical
representative Γ(i,π) whose projection Πi(Γ(i,π)) is greater than the projection of our
candidate for the canonical representative Γcan we can eliminate the whole right
coset S(i)

n π from our search. In the case Πi(Γ(i,π)) < Πi(Γcan) the candidate Γcan

cannot be the canonical representative and we replace Γcan by Γ(n,π).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 11

We substitute the naive brute force approach by a systematical enumeration of
all permutations. The coset S(i)

n π consists of all permutations whose preimages of
the first i positions are given by the preimages of π:

S(i)
n π = {σ ∈ Sn | σ−1(j) = π−1(j), ∀ 0 ≤ j < i}.

Prescribing additionally the preimage of the point i gives us n − i possibilities to
extend the vector (π−1(0), . . . , π−1(i− 1)) by a further preimage. This corresponds
to the disjoint decomposition of the coset

S(i)
n π =

⋃
σ∈T (i)

S(i+1)
n σπ

where T (i) is a right transversal of S(i+1)
n in S(i)

n . We interprete the cosets S(i)
n π as

nodes of a rooted tree structure with root node S(0)
n id = Sn. For i < n, each node

S
(i)
n π is parent of the nodes S(i+1)

n σπ, σ ∈ T (i). We label the arc (S(i)
n π, S

(i+1)
n σπ)

by the transversal element σ. The leafs of this tree are the cosets S(n)
n π = {π}.

Using a depth-first-search procedure to visit all leafs of this search tree corresponds
to the enumeration of all permutations, such that the elements of an arbitrary coset
S

(i)
n π are consecutive. As we have seen in the example above, we can skip the per-

mutations S(i)
n π in certain situations, i.e. we can prune the subtree rooted in S(i)

n π.

Algorithm 2 describes the backtrack search algorithm to calculate the canonical
generator matrix of an equivalence class of a linear code C given by its generator
matrix Γ. We replace the nodes S(i)

n π by i-semicanonical representatives of the
orbits G(sl)(πΓ), remembering that the first i columns stay fixed and the remaining
columns may be further permuted. The root node of this search tree is therefore
equal to Γ. The sons of this node – calculated in Algorithm 3 – represent all
possibilities to move an arbitrary column of the matrix Γ to the first position.
Increasing i by 1 in the next step, see line 13 of Algorithm 3, tells us to fix this
column in the whole subtree rooted in this node.

By calling Algorithm 1, see line 5, we receive i-semicanonical representatives in
each step. We always keep a candidate Γcan for the canonical representative, which
is n-semicanonical and therefore also i-semicanonical for all i ≤ n. If the projections
Πi(Γcan) and Πi(Γ(i,π)) do not coincide, then all orbits G(sl)(σπΓ), σ ∈ S(i+1)

n are
different from the orbit G(sl)Γcan – see Example 2. We have to distinguish two

Algorithm 2 CodeCan – Linear code canonization algorithm

Input: Γ ∈ Fk×n
q

Output: πcan ∈ Sn Transporter Element
Output: Γcan ∈ Fk×n

q canonical representative of the semilinear isometry class
Output: A = Aut(C) the automorphism group of C

1: procedure CodeCan(Γ)
2: A← {id};
3: Γcan ← NIL;
4: CodeCanStep(1, id,Γ);// construct the sons of the root node
5: return (πcan,Γcan, A);
6: end procedure

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

12 Thomas Feulner

Algorithm 3 CodeCanStep – One step of the canonization algorithm

Input: Global Variables (defined in Algorithm 2) Γcan, πcan, A
Input: i ∈ {1, . . . , n}, π ∈ Sn, Γ ∈ Fk×n

q

1: procedure CodeCanStep(i, π, Γ)
2: for j ← i− 1 to n− 1 do
3: Γ′ ← (i− 1, j)Γ; // swap columns i− 1 and j
4: σ ← (i− 1, j);
5: (Γ′,)← Semicanonical(i,Γ′); // take an i-semicanonical representative

of the orbit
6: if Γcan 6= NIL ∧Πi(Γ′) > Πi(Γcan) then
7: continue;// prune this subtree, it has no canonical elements
8: end if
9: if Γcan 6= NIL∧Πi(Γ′) < Πi(Γcan) then // the candidate is not canonical

10: Γcan ← NIL; // will be newly set by the next leaf, see line 16
11: end if
12: if i < n then
13: CodeCanStep(i+ 1, σπ, Γ′); // next level, depth first search
14: else // a leaf node
15: if Γcan = NIL then // a new candidate for the canonical element
16: Γcan ← Γ′;
17: πcan ← σπ;
18: else // an automorphism
19: A←

〈
A ∪ {π−1σ−1πcan}

〉
;

20: end if
21: end if
22: end for
23: end procedure

different cases. The first is that the projection of this node is smaller than the
projection of Γcan – see line 9. In this case, we replace the candidate Γcan by Γ(i,π)

(more precisely: by the n-semicanonical orbit representative which is calculated in
the next leaf). If the projection of this node is greater than the projection of the
candidate, we can skip this subtree, since no representative would be found there,
see line 6.

The calculation of unique representatives of the linear isometry classes and the
linear automorphism group can be done with the same backtracking, where we just
have to replace the calculation of the i-semicanonical representatives, see line 5 of
Algorithm 3, by the linear version of Algorithm 1.

It is not necessary to store the elements of G(sl) applied to Γ during the back-
tracking. The calculation is done after finishing Algorithm 2 for the generators of
A and the element πcan using an adapted version of Algorithm 1.

5. Pruning the Search Tree

In this section we describe the possibilities to further reduce the size of the search
tree and we introduce the two most important functions in the final implementation
of Algorithm 3.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 13

5.1. Pruning subtrees by the Homomorphism Principle. In order to use the
Homomorphism Principle, we define suitable G-homomorphisms

f : G(sl)\\Fk×n
q → X

for appropriate subgroupsG ≤ Sn and codomainsX which will be used in Algorithm
3. All homomorphisms which will be used are of some special type:

Definition 5.1. Let G ≤ Sn. We call a G-homomorphism f : G(sl)\\Fk×n
q → Y n

G-signature if it assigns to each column index j ∈ {0, . . . , n − 1} a value yj ∈ Y
and the operation of G on the codomain is just the natural action on n-vectors
(y0, . . . , yn−1) ∈ Y n.

The next definition introduces a generalization of the pointwise stabilizer. After-
wards we will show that only these special subgroups of Sn will occur as stabilizers.

Definition 5.2. A strictly increasing sequence 0 = α0 < α1 < . . . < αm = n of
natural numbers gives an (ordered) partition of the set {0, . . . , n− 1}

[α0, . . . , αm] := {{α0, . . . , α1 − 1}, . . . , {αm−1, . . . , αm − 1}}
where we call the subsets {αi, . . . , αi+1 − 1} the blocks or cells of the partition.
The canonical Young subgroup of the partition [α0, . . . , αm] is defined to be the
intersection of the setwise stabilizer subgroups of its cells

S[α0,...,αm] :=
⋂m

i=1(Sn){αi−1,...,αi−1}.

For two partitions α = [α0, . . . , αm] and β = [β0, . . . , βm′] of {0, . . . , n − 1} we say
α is finer than β – or a refinement of β – if S[α0,...,αm] ≤ S[β0,...,βm′].6

The intersection of two canonical Young subgroups of Sn is again a canonical
Young subgroup. The same holds for the stabilizer S(i)

n = S[0,1,...,i−1,i,n] of the first
i points. Suppose we reached some node on level i in our backtracking procedure
and the stabilizer of the predecessor node on level i − 1 is some canonical Young
subgroup. On level i the column i − 1 is additionally fixed and we have to build
the intersection of this group with S

(i)
n resulting in a canonical Young subgroup

S[α0,...,αm].
Next, we use the homomorphism principle by applying an S[α0,...,αm]-signature

with codomain Y n, which is ordered lexicographically or colexicographically ac-
cording to some total order on the set Y . The canonical elements should be
the smallest elements in the orbits. Calculating the orbit representatives ycan ∈
S[α0,...,αm]f(G(sl)Γ) of the image f(G(sl)Γ) is easily achieved by sorting the entries
of the vector f(G(sl)Γ) within the blocks {αi−1 . . . , αi − 1}, i = 1, . . . ,m′ given
by [α0, . . . , αm]. Now we are only allowed to permute equal entries of the vector
ycan within the same blocks. But these entries are consecutive and therefore the
stabilizer

(
S[α0,...,αm]

)
ycan is a canonical Young subgroup as well.

Induction shows that the occurring subgroups of Sn are always canonical Young
subgroups. This is just the group theoretic validity of McKay’s algorithm [12].

Algorithm 4 describes some additional code lines which can be placed after line 11
of Algorithm 3 to apply the Homomorphism Principle. The sequence (f (i)

0 , . . . , f
(i)
v−1)

of homomorphisms has to be chosen in some unique way. The signatures which are
explicitly used are stated next.

6or equivalently: each block {αi, . . . , αi+1 − 1}, 0 ≤ i ≤ m − 1 is contained in some block

{βj , . . . , βj+1 − 1}, 0 ≤ j ≤ m′ − 1

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

14 Thomas Feulner

Algorithm 4 Refine – The Homomorphism Principle

1: for l← 0 to v − 1 do
2: y ← f

(i)
l (G(sl)Γ′);

3: Calculate ρ ∈ S[α0,...,αm] : ρy = ycan ∈ S[α0,...,αm](y) canonical representative;
4: if Γcan 6= NIL ∧ ycan < f

(i)
l (G(sl)Γcan) then

5: Γcan ← NIL; // a new candidate for the canonical element
6: end if
7: if Γcan 6= NIL ∧ ycan > f

(i)
l (G(sl)Γcan) then

8: break j; // Prune the whole subtree below this node
9: end if

10: Γ′ ← ρΓ′;
11: σ ← ρσ;
12: Calculate partition [β0, . . . , βm′] : S[β0,...,βm′] =

(
S[α0,...,αm]

)
ycan ;

13: [α0, . . . , αm]← [β0, . . . , βm′];
14: end for

We further have to modify line 2 of Algorithm 3: Suppose S[α0,...,αm] is the
remaining, operating group on level i−1, i.e. [α0, . . . , αm] = [1, . . . , i−1, αi, . . . , αm].
This information is provided via an additional input parameter [α0, . . . , αm] of the
function CodeCanStep. The upper bound of the for loop can be replaced by αi−1
since only the column indices in the cell {αi−1, . . . , αi − 1} need to be mapped to
position i − 1. The operating group is then replaced by S[α0,...,αm] ∩ S

(i)
n in order

to fix position i− 1 in this subtree.

Lemma 5.3. With the help of i-semicanonical representatives Γ := (γT
0 , . . . , γ

T
n−1)

of each orbit, we define the S(i)
n -signature f (i)

0 : G(sl)\\Fk×n,k
q → ({0, 1}k ∪ {∞})n,(

f
(i)
0 (G(sl)Γ)

)
j

:=

{
∞, if γj 6∈ span(γ0, . . . , γi−1)
δsupp(γj), else

where (δsupp(γj))m :=

{
1, if m ∈ supp(γj)
0, else

is the binary representation of supp(γj).

Proof. The map is well defined since any other i-semicanonical representative is
reached by the multiplication of an element in G

(sl)
Πi(Γ). These elements respect the

support of a column γj ∈ span(γ0, . . . , γi−1). Of course, f (i)
0 is an S(i)

n -signature.

Example 3. Let i = 3 and Fq = F4 = {0, 1, x, x2}. The matrix

Γ :=


1 0 0 x x2 x2

0 1 0 1 1 0
0 0 1 x 1 1
0 0 0 0 1 0


is 3-semicanonical. Taking this matrix as input to f (3)

0 we get:

f
(3)
0

(
G(sl)Γ

)
=




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


1
1
1
0

 ,∞,


1
0
1
0




Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 15

Canonizing the image tells us to apply the permutation (3, 4, 5) in order to sort the
columns 3, 4 and 5 of the image. This gives us a discrete partition of the column
indices, i.e. a trivial stabilizer subgroup S[0,1,2,3,4,5,6] = {id}. We conclude that
there is only one leaf G(sl)((3, 4, 5)Γ) in the pruned subtree below the original node
instead of 6 = |S(3)

6 | nodes in the original search tree.

The next signature is based on the fact that the entries of two i-semicanonical
representatives Γ′ = ((A,ϕ);α)Γ with ((A,ϕ);α) ∈ G(sl)

Πi(Γ) cannot be arbitrary. Let
(s, p, t) be the parameter set of Definition 4.2 defined by Πi(Γ). Now, take a column
γT

l of Γ which lies in the span of the first i columns. Suppose Γκ,l 6= 0 for some
κ < s and κ∗ is defined by κ ∈ pκ∗ ∈ p. Applying (A,ϕ) to α(Γ) multiplies all rows
m ∈ pκ∗ by the same nonzero field element7 and therefore the quotients satisfy
Γ′κ,l · Γ′m,l

−1 = α
(
Γκ,l · Γ−1

m,l

)
, where α is an element of 〈τ t〉 ≤ Aut(Fq).

Lemma 5.4. Let 0 ≤ κ ≤ k − 1 be arbitrary and ∞ 6∈ Fq one more symbol. The
mapping(
f

(i)
1,κ(G(sl)Γ)

)
l
:=

〈τ t〉
(
Γκ,l · Γ−1

m,l

)
m∈pκ∗

, γT
l ∈ span(γ0, . . . , γi−1) ∧ Γκ,l 6= 0

∞, else

defined on i-semicanonical representatives Γ := (γT
0 , . . . , γ

T
n−1) is well-defined and

an S
(i)
n -signature.

Example 4. We start with the 4-semicanonical representative

Γ =

 1 0 1 0 x2 1 0
0 1 1 0 x 1 1
0 0 0 1 1 x2 1

 ∈ F3×7
4

The stabilizer of Π4(Γ) is defined by the parameters (3, {{0, 1}, {2}}, 1). We cal-
culate the image in the case κ = 0. The orbits 〈τ t〉

(
Γκ,l · Γ−1

m,l

)
m∈pκ∗

will be

represented by the lexicographically smallest element.

f
(4)
1,0

(
G(sl)Γ

)
=

((
1
0

)
,∞,

(
1
1

)
,∞,

(
1
x

)
,

(
1
1

)
,∞

)
For the column j = 4 we have to take the minimization by the field automorphism
into account since the quotient vector originally is equal to (1, x2)T .

A wide range of S(i)
n - and S[α0,...,αm′]-homomorphisms can be constructed by

taking code invariants V : L(Fn
q)→ X, i.e. mappings which return the same result

for semilinearly isometric codes.
The most important example in our case might be the weight enumerator

WC(x) :=
∑

c∈C x
wt(c) of the code C. By puncturing and shortening the code

– which are defined below – in selected subsets of the column indices, we are able
to construct a lot of different homomorphisms.

Definition 5.5. Let Γ be a generator matrix of a linear code C of length n. For a
subset J ⊂ {0, . . . , n− 1}

7Because the matrix components of the generators of G
(sl)
Πi(Γ)

multiply these entries by the same

nonzero element and an addition of nonzero elements cannot happen.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

16 Thomas Feulner

• the punctured code CJ is constructed by replacing the entries at positions
j ∈ J of all codewords by zero, and

• the shortened code C\J of the code C is the subset of all codewords
(c0, . . . , cn−1) ∈ C with cj = 0 ∀ j ∈ J .

In contrast to the standard definition of shortening and puncturing a code, we
do not remove the positions indexed by J and therefore CJ as well as C\J are
linear codes of length n. This avoids problems in defining the signatures in the next
lemma:

Lemma 5.6. Let J1, J2 be disjoint subsets of {0, . . . , i−1}, C(Γ) the code generated
by Γ and V : L(Fn

q)→ X a code invariant, then the mapping

f
(i)
2,J1,\J2

: G(sl)\\Fk×n,k
q → Xn, G(sl)Γ 7→ (xΓ

0 , . . . , x
Γ
n−1)

xΓ
j := V

((
(C(Γ)J1)\J2

)
{j}

)
, j ∈ {0, . . . , n− 1}

is an S(i)
n -signature. The same is true for f (i)

3,J1,\J2
defined analogously by shortening

at the coordinates j ∈ {0, . . . , n− 1}.

Proof. The mappings are independent of the choice of the representative Γ since
we are using an invariant in the definition of xΓ

j . Let σ ∈ S
(i)
n be arbitrary. It

is obviously true that σ(CJ) = σ(C)σ(J) and σ(C\J) = σ(C)\σ(J) for arbitrary
subsets J ⊂ {0, . . . , n − 1} and arbitrary linear codes C of length n. This and the
fact σ(Ji) = Ji, i = 1, 2 are used to prove the homomorphism property:

xσΓ
j =V

((
(C(σΓ)J1)\J2

)
{j}

)
= V

((
((σC(Γ))J1)\J2

)
{j}

)
=V

((
((σC(Γ))σ(J1))\σ(J2)

)
σ{σ−1(j)}

)
= V

(
σ

(
((C(Γ))J1)\J2

)
{σ−1(j)}

)
=V

((
((C(Γ))J1)\J2

)
{σ−1(j)}

)
= xΓ

σ−1(j)

=⇒ f
(i)
2,J1,\J2

(G(sl)(σΓ)) = σf
(i)
2,J1,\J2

(G(sl)Γ).

Example 5. Let Γ =
(

1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1

)
be the generator matrix of the [7, 4, 3]2–

Hamming Code where the first two columns are already fixed. We calculate the
image of f (2)

2,∅,\{0,1} taking the weight enumerator as invariant of the code.

words of the shortened code C\{0,1} j
(
f

(2)
2,∅,\{0,1}

)
j

0 1 + 2x3 + x4

(0 0 0 0 0 0 0) 1 1 + 2x3 + x4

(0 0 1 0 1 0 1) 2 1 + 2x2 + x4

(0 0 0 1 1 1 1) 3 1 + x2 + 2x3

(0 0 1 1 0 1 0) 4 1 + x2 + 2x3

5 1 + x2 + 2x3

6 1 + x2 + 2x3

In order to reduce the computational complexity of the signature using the weight
enumerator as invariant, we modify it to only count the number of codewords equal
to the minimum distance of the code. This set of words can be calculated once

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 17

for the root node and adapted to the actually considered permutation to get an
S

(i)
n -signature on any level i.
Since our acting group is already reduced to a subgroup S[α0,...,αm] ≤ S

(i)
n , we are

not restricted to code invariants at all. We can also construct S[α0,...,αm]-signatures
using S[α0,...,αm]-invariants of the code. The most important example of such an
invariant is the block weight enumerator of the partition [α0, . . . , αm]:

Definition 5.7. Let [α0, . . . , αm] be a partition of n. We define the block weight
enumerator of this partition to be the polynomial

W
[α0,...,αm]
C (x0, . . . , xm−1) :=

∑
c∈C

m−1∏
i=0

x
wt[αi,αi+1](c)

i

where wt[αi,αi+1](c) := |{j | αi ≤ j < αi+1 ∧ cj 6= 0}| is the Hamming weight of the
codeword c ∈ C in the block {αi, . . . , αi+1 − 1}.

Another S(i)
n -signature may be formulated by Leon’s idea [10] of taking invariant

subsets of the code C. The adaption of this idea is possible, but not applied. We
also did not investigate invariants using the hull of a linear code, see [13].

5.2. Pruning subtrees by automorphisms. We introduce complete labeled
branchings due to Jerrum [8] to manage the group of known automorphisms within
our backtrack search algorithm. This gives us a test for pruning isomorphic subtrees.
The type of a permutation g ∈ G ≤ Sn, g 6= id is defined as the pair type(g) := (i, j)
where j := g(i) is the image of the first nonfixed position i ∈ {0, . . . , n− 1}.

A tuple (B, γ) is called labeled branching of G, if
1. B is a branching on the set of nodes {0, . . . , n − 1}, i.e. an acyclic, directed

graph with at most one arc ending at each node. Each arc (i, j) fulfills the
condition i < j.

2. γ = (γ0, . . . , γn−1) ∈ (Sn)n is a vector of permutations with
• if (i, j) is an arc in B, then σij := γ−1

j γi is of type(σij) = (i, j) and
• the set {σij | (i, j) is an arc in B} generates G.

A branching B defines a partial order on the set {0, . . . , n− 1} via:

i � j :⇐⇒ there is a directed path from i to j in B.

If each set T (i) = {σij | i � j} is a complete set of left coset representatives of
G(i)/G(i+1), we say the labeled branching is complete.

Fact 5.8 (Jerrum [8]). Let A be a subgroup of Sn and (B, γ) a complete labeled
branching of A. A permutation π ∈ Sn is lexicographically minimal in πA, if and
only if π is a topological sorting of B, i.e. i � j =⇒ π(i) ≤ π(j).

We will store the group A ≤ Sn of known automorphisms of G(sl)Γ using a
complete labeled branching. During our backtrack search algorithm we are only
interested in visiting the transversal of lexicographically minimal elements t of each
coset of A, since all other elements in tA lead to isomorphic copies of G(sl)(tΓ).

Suppose we have reached level i in our backtrack search algorithm. Let π be the
permutation which we have already applied to the root node and S[α0,...,αm] ≤ S

(i)
n

the remaining permutations. Lemma 5.9 gives us a test, if there are topological sort-
ings in the subtree S[α0,...,αm]π. The lemma tightens a test of Gugisch [7] formulated
for S(i)

n π.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

18 Thomas Feulner

Lemma 5.9. Let (B, γ) be a complete labeled branching of a subgroup A of Sn,
[α0, . . . , αm] a partition of n and π ∈ Sn arbitrary. There are topological sortings
of B in the coset S[α0,...,αm]π if and only if for any arc (i, j) in B the image π(i) is
not allowed to lie in a cell further right than the cell containing π(j), i.e.[

π(i) ∈ {αv, . . . , αv+1 − 1} ∧ π(j) ∈ {αu, . . . , αu+1 − 1}
]

=⇒ v ≤ u.

Proof. We suppose π is not fulfilling the condition above. Then, there is an arc
(i, j) and for the corresponding indices u, v ∈ {0, . . . ,m− 1} the index v is greater
than u. For all σ ∈ S[α0,...,αm] also the images σπ(j) ∈ {αu, . . . , αu+1 − 1} and
σπ(i) ∈ {αv, . . . , αv+1 − 1} must lie in the same sets. Now

σπ(j) ≤ αu+1 − 1 < αv ≤ σπ(i)

and no topological sorting of B can be found in S[α0,...,αm]π.
For the converse, we construct a permutation σ ∈ S[α0,...,αm] such that in each

block {αw, . . . , αw+1 − 1}, w ∈ {0, . . . ,m − 1} of the partition the sequences of
preimages

(
π−1σ−1(αw), . . . , π−1σ−1(αw+1 − 1)

)
are ascending.

The permutation σπ is a topological sorting of B: Let (i, j) be an arbitrary arc in
B and define u, v like above:
• if v < u, then the images σπ(j) and σπ(i) also lie in the sets {αu, . . . , αu+1−1}

and {αv, . . . , αv+1 − 1}, respectively. Thus, σπ(i) < σπ(j).
• if v = u, then the way we have chosen σ gives us π−1σ−1(x) = i < j =
π−1σ−1(y) for some x, y ∈ {αu, . . . , αu+1 − 1} : x < y, which implies σπ(i) =
x < y = σπ(j).

Once we found a new automorphism in our search, we add it to the group A
and update the complete labeled branching to this bigger group. This reduces the
set of transversal elements of Sn/A and thereby makes the test more restrictive. In
fact, the effort is always reduced by the order |A| of the group of known automor-
phisms. The test is applied in each iteration of Algorithm 4 just before calling the
homomorphism and once again, when returning to Algorithm 3.

6. Numbering the Field Elements

Within the article the field was just specified to be totally ordered in some way
with the zero element to be smallest and 1 ≤ µ, ∀ µ ∈ F∗q . Of course, different
ways of numbering the field elements lead to different lexicographical orders on the
generator matrices and therefore they result in different i-semicanonical orbit repre-
sentatives calculated by the algorithm. To realize and utilize databases of canonical
forms traceable and independent from the different isomorphic field representations,
we need a canonical order of the field, too.

Of course, prime fields Fp, can be ordered by identifying the residue classes x+(p)
by their representatives x ∈ {0, . . . , p−1} and the natural order 0 < 1 < . . . < p−1.
If q = pr with r > 1, we choose the Conway polynomial [14] f of degree r over Fp

to define the field extension, since these polynomials are used in most computer
algebra systems by default. Let α be a root of this polynomial. Then any element
µ ∈ Fq can be uniquely expressed by

µ =
r−1∑
i=0

aiα
i with ai ∈ Fp, i = 0, . . . , r − 1.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

The Automorphism Groups of Linear Codes 19

This representation of the field elements and the above identification of residue
classes and their representatives in {0, . . . , p− 1} give us a bijection

Nα : Fq → {0, . . . , q − 1},
r−1∑
i=0

aiα
i 7→

r−1∑
i=0

aip
i

and therefore a total order on Fq: For all λ, µ ∈ Fq : λ <α µ :⇐⇒ Nα(λ) < Nα(µ).
We have to guarantee that the result of our canonization algorithm is independent

of the choice of the root α.

Lemma 6.1. Let α, β be two roots of a monic irreducible polynomial f over Fp of
degree r and q := pr. Then

(Nα)−1 ◦Nβ ∈ Aut(Fq).

Proof. For an arbitrary field element µ =
∑r−1

i=0 biβ
i ∈ Fq we have(

(Nα)−1 ◦Nβ
)
(µ) = (Nα)−1

(∑r−1
i=0 bip

i
)

=
∑r−1

i=0 biα
i,

defining an automorphism of Fq.

The algorithm works with a labeling of the field elements according to the root
α. If another root β of the same irreducible polynomial f is used to construct the
input, the canonical representative will be the same. This is guaranteed by the
lemma above. Taking a root from another monic, irreducible polynomial of degree
r may lead to a different canonical generator matrix.

7. Conclusion

We have described an algorithm which is able to calculate a uniquely determined
generator matrix in the set of all generator matrices of semilinearly isometric codes
to a given linear code. Further, this algorithm can also be used to calculate the
automorphism group of this code in the more general notion of semilinear isometry.

We point out that the algorithm should be applied to a parity check matrix of
the code in the case k > n

2 , since the effort is mainly depending on the parameter
k. The result can be adapted to the generator matrix of the code easily.

A first implementation of the algorithm is very promising, although it is not
containing a heuristic selection of S(i)

n -homomorphisms which should be applied on
level i. Furthermore, it is easy to expand the set of homomorphisms and there are
still a lot which have not been tested at all. It is planned to use the algorithm for
building up a database of canonical generator matrices. But since the canonical
form is depending on the choice of homomorphisms, this work is not yet done.

We used the algorithm to calculate the automorphism group of the CCZ-Code [4]
C

(n)
f for the almost perfect nonlinear (APN-) function f (n) : Fn

2 → Fn
2 , x 7→ x3 with

parameters [2n, 2n+1, d(n)]2. Here are the times in seconds needed on a single core
of a 2.4 GHz Intel Quad 2 processor. Times are compared with the implementation
of Leon’s algorithm in the computer algebra system Magma [2]:

n d |Aut(C)| Leon’s algorithm the new algorithm
9 240 2354688 28 45
10 480 10475520 20 6
11 992 46114816 exceeding Magma’s 14400
12 1984 201277440 memory limit 360
14 8064 3757867008 of 2.3 GB 2330000

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

20 Thomas Feulner

For n = 12 the number of words of minimal weight is 1397760 and 350MB
of memory are sufficient during the calculation process8. For n = 14 there are
even 22368256 words with Hamming weight 8064 and the program uses less than
4GB of memory. We are still looking for some appropriate signatures for a better
performance in the odd case.

Moreover, we applied the algorithm to the database provided by Kohnert [5]
and compared runtimes for the calculation with Leon’s algorithm. In most cases
time spent in the two different algorithms only differed by a factor less than 2
independent from the parameter set [n, k, d]q, but there are counter examples in
both directions. Moreover, this comparison discounts the fact that our algorithm
solves a more general problem.

The adaption of the algorithm to linear codes over finite chain rings R is possible,
but the performance will mainly depend on the minimization algorithm of the inner
group action. In the special case of R = Z4 we are already able to give such an
algorithm, which is hardly more difficult than the procedure for finite fields.

References

[1] A. Betten, M. Braun, H.Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, “Error-
Correcting Linear Codes. Classification By Isometry And Applications,” Springer, Berlin,
2006.

[2] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I: The user language,
J. Symbolic Comput., 24 (1997), 235–265.

[3] I. Bouyukliev, About the code equivalence, Ser. Coding Theory Cryptol., 3 (2007), 126–151.
[4] C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of quadratic almost perfect

nonlinear trinomials and multinomials, Finite Fields Appl., 14 (2008), 703–714.
[5] M. Braun, A. Kohnert and A. Wassermann, Optimal linear codes from matrix groups, IEEE

Trans. Inform. Theory, 51 (2005), 4247–4251.
[6] M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes,” Online

available at http://www.codetables.de.
[7] R. Gugisch, “Konstruktion von Isomorphieklassen orientierter Matroide,” Ph.D Thesis, Uni-

versity of Bayreuth, 2005.
[8] M. Jerrum, A compact representation for permutation groups, J. Algorithms, 7 (1986), 60–78.
[9] R. Laue, Constructing objects up to isomorphism, simple 9-designs with small parameters, in

“Algebraic combinatorics and applications” (eds. A. Betten et al.), Springer, (2001), 232–260.
[10] J. S. Leon, Computing automorphism groups of error-correcting codes, IEEE Trans. Inform.

Theory, 28 (1982), 496–511.
[11] J. S. Leon, Partitions, refinements, and permutation group computation, DIMACS Ser. Dis-

crete Math. Theoret. Comput. Sci., 28 (1997), 123–158.
[12] B. D. McKay, Practical graph isomorphism, Congr. Numer., 30 (1981), 45–87.
[13] N. Sendrier, Finding the permutation between equivalent linear codes: The support splitting

algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193–1203.
[14] A. Scheerhorn, Trace- and norm-compatible extensions of finite fields, Appl. Algebra Engrg.

Comm. Comput., 3 (1992), 199–209.
[15] W. Schmid and R. Schürer MinT: a database for optimal net parameters, in “Monte Carlo

and Quasi-Monte Carlo Methods 2004” (eds. H. Niederreiter and D. Talay), Springer, (2006),
457–469.

Received XXX 200X; revised XXX 200X.

E-mail address: thomas.feulner@uni-bayreuth.de

8Because of Magma’s memory limit we used an exhaustive search to get all the vectors of
minimum weight. In the general implementation, we use a call of Magma routines instead. The
codeword c is stored via the information vector v ∈ Fk

2 : vΓ = c.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX

http://www.codetables.de

	1. Introduction
	2. Code Equivalence
	3. Groups and Group Actions
	4. Splitting the group action
	4.1. The inner group action
	4.2. The outer group action

	5. Pruning the Search Tree
	5.1. Pruning subtrees by the Homomorphism Principle
	5.2. Pruning subtrees by automorphisms

	6. Numbering the Field Elements
	7. Conclusion
	References

