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Outline:
@ Introduction to Network Coding
@ Equivalence of constant dimension codes
@ Rephrase Equivalence in terms of a finite group action

@ Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

@ Generalization for network codes
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Introduction

Network Coding

Projective Geometry

The projective geometry PG(FZ) is the set of all subspaces of Fg
ordered by inclusion.

Network Code
A network code C is a subset of the projective geometry PG(Fg).

Constant Dimension Code

C is called constant dimension code if
@ C is a network code and
@ 31 <k <nsuchthat U € C = dim(U) = k




Introduction
Metric

Subspace Distance in PG(Fg)

ds(U, V) :=dim(U) 4+ dim(V) — dim(U N'V)
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Isometry

A map ¢ : PG(Fg) — PG(Fy) preserving the subspace distance, i.e.

ds(U, V) = ds(u(U), (V) VU,V € PG(F?)

is called an isometry on PG(Fg).




Introduction
Isometry

A map ¢ : PG(Fg) — PG(Fy) preserving the subspace distance, i.e.
ds(U, V) = ds((), (V) ¥ 1L,V € PG(FD)

is called an isometry on PG(Fg).

v

Let n>3,.: PG(F2) — PG(F?):

¢ isometry with ¢({0}) = {0} <= ¢ is an order preserving map




Introduction
Isometry

Fundamental Theorem of Projective Geometry

Let n >3 and ¢ : PG(F7) — PG(IFg) isometry with ¢({0}) = {0},
if and only if

t=(A,a) € PTL, = (GL, /Zp) x Aut(Fg)

(the projective semilinear group).
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Introduction
Equivalence

Definition

Two network codes C, C’ are called equivalent if and only if there
is an isometry ¢ : PG(Fg) — PG(Fg) with «({0}) = {0} such that
(C)=C".

Due to the transmission model applied in random network coding
it is also reasonable to demand ¢({0}) = {0} for the definition of
equivalence of network codes.
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Group Action

In terms of finite group actions

Let C be a constant dimension code. Calculate the

o stabilizer Aut(C) under the action of PI'L,,

@ a uniquely defined representative of the orbit PI'L, - C
efficiently.
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Matrix Representation

Matrix Representation

Let C={U;|i=0,...,m— 1} be a constant dimension code,
with U; = colspace(U;), U; € IFZX".
o N=(Up...Un-1) € ]Fngm is a matrix representation of C.

@ The set of all matrix representations of C is equal to the orbit
(GLY xSm) - T.

RENEILS

For ,,useful” constant dimension codes it will allways be the case
that the rank of I is equal to n.

Monomial Matrices

If k=1 then GLyx =Fy and GL}' x S, is equal to the set of
monomial matrices.

| \
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Equivalence

@ Two matrix representations I', [’ € IE“ng’” are called equivalent
if the corresponding constant dimension codes are equivalent.
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Group Action

Equivalence

Equivalence
@ Two matrix representations I', [’ € IE“ng’” are called equivalent
if the corresponding constant dimension codes are equivalent.
o {I"| " equivalent to '} =
((GLn x GLY")  (Sm x Aut(Fg))) - T
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Linear and additive codes (another point of view)

The special case k =1

@ The rows of a matrix representation I of C generate a linear
[m, n]g-code L.

@ {I"" | T’ generator matrix of L’ equivalent to L} =
((GLp X GLY) % (Sm x Aut(Fg))) - T

’

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.
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Group Action

Linear and additive codes (another point of view)

The special case k =1

@ The rows of a matrix representation ' of C generate a linear
[m, n]g-code L.

o {I"" | T’ generator matrix of L’ equivalent to L} =
((GLp x GLY) % (Sm x Aut(Fyg))) - T

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.
But, k =1 does not yield applicable constant dimension codes.
Hence, we will suppose k > 1 in the following.
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Group Action

Linear and additive codes (another point of view)

The case k # 1 (Y. Edel)

@ The rows of a matrix representation I of C generate an
additive (m, g")-code A over F

qk.
o {I'""| " represents A’ equivalent to A} =
((GLp x GLY) X (Sm x Aut(Fq))) - T

Our new algorithm solves the similar problem for additive codes.
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The algorithm for linear codes

| Backtracking over S, permutes columns h

(70717273)

(70 vwmm{s) m%mm)
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The Algorithm

The algorithm for linear codes

Minimize fixed columns, not changing the
previously fixed using the remaining part of
the group (GL, x GL}") x Aut(F)

(70717273)

eol'mm (m |’YO’Y273 (v2[v17073) Y3]717270)

KA
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The Algorithm

The algorithm for linear codes

Canonical Form equals mini-
mum over all leaf nodes

CF
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The Algorithm

The algorithm for linear codes

Prune subtrees rooted in
nonoptimal initial parts

CF
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The Algorithm

The algorithm for linear codes

Automorphisms can be found
by paths connecting equal leafs

CF ~~----"TCF CF
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The Algorithm

The algorithm for linear codes

Automorphisms can be used for
further pruning the tree

-~ P
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The Algorithm

Improvement: Refinements

Try to distinguish columns by
“properties” (invariant under
the remaining group action)

|
|
| |
| | .

1 ( [707173) +— S2 X S3 acting

[RR— (R — —_——

F———— == —_——a AN — 1

(v2lr4lr071793) | 1 (al720707173)
[
[
(72l !’Yo“/ﬂa)Jl 1 (7al72707173)

|
|
|
|
|
-4
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The Algorithm

Improvement: Refinements

the remaining group action)

(v2174]v07173) :

|
|
(72|74 |v07173) |

= Ordering on “properties”

Try to distinguish columns by
“properties” (invariant under

(7val721707173)

(74\ \707173)

|
|
|
|
|
-4

allows further pruning.
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The Algorithm

Refinement in the case of linear codes

Example: Incidence with hyper-
planes

r=n-—1
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The Algorithm

Refinement in the case of linear codes

Example: Repeat process until
stable

r=n-—1
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The Algorithm

Work in progress: Canonization of network codes

Idea: Adapt the algorithm for linear codes to be used for constant
dimension codes.
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The Algorithm

Canonization of network codes

|Step 1: Choose appropriate linear code h

® O ® & =«
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The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code using
the refinement like above
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The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code, i.e.
some union of equally colored points
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Canonization of network codes

Adaption of the algorithm
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The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
( Yo cee Ux—1 ‘ UO oo Um_1 )
@ Backtracking over S, x Sp,

@ Refinement of Sy x S, via incidence between 7o, ..., Vx—1
and Uy, ..., Un_1

Like before

@ Restriction of GL, xAut(F,) by minimization of fixed
columns ~;

@ Pruning whenever some node

( ;7”(0) 000 P"?ﬂ(x_l) ‘ UO’(O) 000 Da(m—l) ) is identified
to be nonoptimal

@ Use known automorphisms for pruning.
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