
Outline Introduction Group Action The Algorithm

Isometry and Automorphisms of Constant
Dimension Codes

Thomas Feulner

University of Bayreuth

Fq10
July 12, 2011

Joint work with A.-L. Trautmann (University of Zurich)

1 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Outline:

Introduction to Network Coding

Equivalence of constant dimension codes

Rephrase Equivalence in terms of a finite group action

Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

Generalization for network codes

2 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Outline:

Introduction to Network Coding

Equivalence of constant dimension codes

Rephrase Equivalence in terms of a finite group action

Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

Generalization for network codes

2 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Outline:

Introduction to Network Coding

Equivalence of constant dimension codes

Rephrase Equivalence in terms of a finite group action

Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

Generalization for network codes

2 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Outline:

Introduction to Network Coding

Equivalence of constant dimension codes

Rephrase Equivalence in terms of a finite group action

Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

Generalization for network codes

2 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Outline:

Introduction to Network Coding

Equivalence of constant dimension codes

Rephrase Equivalence in terms of a finite group action

Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

Generalization for network codes

2 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Projective Geometry

The projective geometry PG(Fn
q) is the set of all subspaces of Fn

q

ordered by inclusion.

Network Code

A network code C is a subset of the projective geometry PG(Fn
q).

Constant Dimension Code

C is called constant dimension code if

C is a network code and

∃ 1 ≤ k ≤ n such that U ∈ C =⇒ dim(U) = k

3 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Projective Geometry

The projective geometry PG(Fn
q) is the set of all subspaces of Fn

q

ordered by inclusion.

Network Code

A network code C is a subset of the projective geometry PG(Fn
q).

Constant Dimension Code

C is called constant dimension code if

C is a network code and

∃ 1 ≤ k ≤ n such that U ∈ C =⇒ dim(U) = k

3 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Projective Geometry

The projective geometry PG(Fn
q) is the set of all subspaces of Fn

q

ordered by inclusion.

Network Code

A network code C is a subset of the projective geometry PG(Fn
q).

Constant Dimension Code

C is called constant dimension code if

C is a network code and

∃ 1 ≤ k ≤ n such that U ∈ C =⇒ dim(U) = k

3 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Projective Geometry

The projective geometry PG(Fn
q) is the set of all subspaces of Fn

q

ordered by inclusion.

Network Code

A network code C is a subset of the projective geometry PG(Fn
q).

Constant Dimension Code

C is called constant dimension code if

C is a network code and

∃ 1 ≤ k ≤ n such that U ∈ C =⇒ dim(U) = k

3 / 20

Outline Introduction Group Action The Algorithm

Network Coding

Projective Geometry

The projective geometry PG(Fn
q) is the set of all subspaces of Fn

q

ordered by inclusion.

Network Code

A network code C is a subset of the projective geometry PG(Fn
q).

Constant Dimension Code

C is called constant dimension code if

C is a network code and

∃ 1 ≤ k ≤ n such that U ∈ C =⇒ dim(U) = k

3 / 20

Outline Introduction Group Action The Algorithm

Metric

Subspace Distance in PG(Fn
q)

dS(U,V) := dim(U) + dim(V)− dim(U ∩ V)

4 / 20

Outline Introduction Group Action The Algorithm

Isometry

Isometry

A map ι : PG(Fn
q)→ PG(Fn

q) preserving the subspace distance, i.e.

dS(U,V) = dS(ι(U), ι(V)) ∀ U,V ∈ PG(Fn
q)

is called an isometry on PG(Fn
q).

Theorem

Let n ≥ 3, ι : PG(Fn
q)→ PG(Fn

q):

ι isometry with ι({0}) = {0} ⇐⇒ ι is an order preserving map

5 / 20

Outline Introduction Group Action The Algorithm

Isometry

Isometry

A map ι : PG(Fn
q)→ PG(Fn

q) preserving the subspace distance, i.e.

dS(U,V) = dS(ι(U), ι(V)) ∀ U,V ∈ PG(Fn
q)

is called an isometry on PG(Fn
q).

Theorem

Let n ≥ 3, ι : PG(Fn
q)→ PG(Fn

q):

ι isometry with ι({0}) = {0} ⇐⇒ ι is an order preserving map

5 / 20

Outline Introduction Group Action The Algorithm

Isometry

Fundamental Theorem of Projective Geometry

Let n ≥ 3 and ι : PG(Fn
q)→ PG(Fn

q) isometry with ι({0}) = {0},
if and only if

ι = (A, α) ∈ PΓLn = (GLn /Zn) o Aut(Fq)

(the projective semilinear group).

6 / 20

Outline Introduction Group Action The Algorithm

Equivalence

Definition

Two network codes C ,C ′ are called equivalent if and only if there
is an isometry ι : PG(Fn

q)→ PG(Fn
q) with ι({0}) = {0} such that

ι(C) = C ′.

Remark

Due to the transmission model applied in random network coding
it is also reasonable to demand ι({0}) = {0} for the definition of
equivalence of network codes.

7 / 20

Outline Introduction Group Action The Algorithm

Equivalence

Definition

Two network codes C ,C ′ are called equivalent if and only if there
is an isometry ι : PG(Fn

q)→ PG(Fn
q) with ι({0}) = {0} such that

ι(C) = C ′.

Remark

Due to the transmission model applied in random network coding
it is also reasonable to demand ι({0}) = {0} for the definition of
equivalence of network codes.

7 / 20

Outline Introduction Group Action The Algorithm

In terms of finite group actions

Goal

Let C be a constant dimension code. Calculate the

stabilizer Aut(C) under the action of PΓLn,

a uniquely defined representative of the orbit PΓLn · C

8 / 20

Outline Introduction Group Action The Algorithm

In terms of finite group actions

Goal

Let C be a constant dimension code. Calculate the

stabilizer Aut(C) under the action of PΓLn,

a uniquely defined representative of the orbit PΓLn · C

8 / 20

Outline Introduction Group Action The Algorithm

In terms of finite group actions

Goal

Let C be a constant dimension code. Calculate the

stabilizer Aut(C) under the action of PΓLn,

a uniquely defined representative of the orbit PΓLn · C

8 / 20

Outline Introduction Group Action The Algorithm

In terms of finite group actions

Goal

Let C be a constant dimension code. Calculate the

stabilizer Aut(C) under the action of PΓLn,

a uniquely defined representative of the orbit PΓLn · C
efficiently.

8 / 20

Outline Introduction Group Action The Algorithm

Matrix Representation

Matrix Representation

Let C = {Ui | i = 0, . . . ,m − 1} be a constant dimension code,
with Ui = colspace(Ui), Ui ∈ Fn×k

q .

Γ = (U0 . . .Um−1) ∈ Fn×km
q is a matrix representation of C .

The set of all matrix representations of C is equal to the orbit
(GLm

k o Sm) · Γ.

Remark

For
”
useful“ constant dimension codes it will allways be the case

that the rank of Γ is equal to n.

Monomial Matrices

If k = 1 then GLk = F∗q and GLm
k o Sm is equal to the set of

monomial matrices.

9 / 20

Outline Introduction Group Action The Algorithm

Matrix Representation

Matrix Representation

Let C = {Ui | i = 0, . . . ,m − 1} be a constant dimension code,
with Ui = colspace(Ui), Ui ∈ Fn×k

q .

Γ = (U0 . . .Um−1) ∈ Fn×km
q is a matrix representation of C .

The set of all matrix representations of C is equal to the orbit
(GLm

k o Sm) · Γ.

Remark

For
”
useful“ constant dimension codes it will allways be the case

that the rank of Γ is equal to n.

Monomial Matrices

If k = 1 then GLk = F∗q and GLm
k o Sm is equal to the set of

monomial matrices.

9 / 20

Outline Introduction Group Action The Algorithm

Matrix Representation

Matrix Representation

Let C = {Ui | i = 0, . . . ,m − 1} be a constant dimension code,
with Ui = colspace(Ui), Ui ∈ Fn×k

q .

Γ = (U0 . . .Um−1) ∈ Fn×km
q is a matrix representation of C .

The set of all matrix representations of C is equal to the orbit
(GLm

k o Sm) · Γ.

Remark

For
”
useful“ constant dimension codes it will allways be the case

that the rank of Γ is equal to n.

Monomial Matrices

If k = 1 then GLk = F∗q and GLm
k o Sm is equal to the set of

monomial matrices.

9 / 20

Outline Introduction Group Action The Algorithm

Matrix Representation

Matrix Representation

Let C = {Ui | i = 0, . . . ,m − 1} be a constant dimension code,
with Ui = colspace(Ui), Ui ∈ Fn×k

q .

Γ = (U0 . . .Um−1) ∈ Fn×km
q is a matrix representation of C .

The set of all matrix representations of C is equal to the orbit
(GLm

k o Sm) · Γ.

Remark

For
”
useful“ constant dimension codes it will allways be the case

that the rank of Γ is equal to n.

Monomial Matrices

If k = 1 then GLk = F∗q and GLm
k o Sm is equal to the set of

monomial matrices.

9 / 20

Outline Introduction Group Action The Algorithm

Matrix Representation

Matrix Representation

Let C = {Ui | i = 0, . . . ,m − 1} be a constant dimension code,
with Ui = colspace(Ui), Ui ∈ Fn×k

q .

Γ = (U0 . . .Um−1) ∈ Fn×km
q is a matrix representation of C .

The set of all matrix representations of C is equal to the orbit
(GLm

k o Sm) · Γ.

Remark

For
”
useful“ constant dimension codes it will allways be the case

that the rank of Γ is equal to n.

Monomial Matrices

If k = 1 then GLk = F∗q and GLm
k o Sm is equal to the set of

monomial matrices.

9 / 20

Outline Introduction Group Action The Algorithm

Equivalence

Equivalence

Two matrix representations Γ, Γ′ ∈ Fn×km
q are called equivalent

if the corresponding constant dimension codes are equivalent.

{Γ′ | Γ′ equivalent to Γ} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

10 / 20

Outline Introduction Group Action The Algorithm

Equivalence

Equivalence

Two matrix representations Γ, Γ′ ∈ Fn×km
q are called equivalent

if the corresponding constant dimension codes are equivalent.

{Γ′ | Γ′ equivalent to Γ} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

10 / 20

Outline Introduction Group Action The Algorithm

Equivalence

Equivalence

Two matrix representations Γ, Γ′ ∈ Fn×km
q are called equivalent

if the corresponding constant dimension codes are equivalent.

{Γ′ | Γ′ equivalent to Γ} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

10 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The special case k = 1

The rows of a matrix representation Γ of C generate a linear
[m, n]q-code L.

{Γ′ | Γ′ generator matrix of L′ equivalent to L} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.

11 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The special case k = 1

The rows of a matrix representation Γ of C generate a linear
[m, n]q-code L.

{Γ′ | Γ′ generator matrix of L′ equivalent to L} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.

11 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The special case k = 1

The rows of a matrix representation Γ of C generate a linear
[m, n]q-code L.

{Γ′ | Γ′ generator matrix of L′ equivalent to L} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.

11 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The special case k = 1

The rows of a matrix representation Γ of C generate a linear
[m, n]q-code L.

{Γ′ | Γ′ generator matrix of L′ equivalent to L} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.

11 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The special case k = 1

The rows of a matrix representation Γ of C generate a linear
[m, n]q-code L.

{Γ′ | Γ′ generator matrix of L′ equivalent to L} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.
But, k = 1 does not yield applicable constant dimension codes.
Hence, we will suppose k > 1 in the following.

11 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The case k 6= 1 (Y. Edel)

The rows of a matrix representation Γ of C generate an
additive (m, qn)-code A over Fqk .

{Γ′ | Γ′ represents A′ equivalent to A} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

Our new algorithm solves the similar problem for additive codes.

12 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The case k 6= 1 (Y. Edel)

The rows of a matrix representation Γ of C generate an
additive (m, qn)-code A over Fqk .

{Γ′ | Γ′ represents A′ equivalent to A} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

Our new algorithm solves the similar problem for additive codes.

12 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The case k 6= 1 (Y. Edel)

The rows of a matrix representation Γ of C generate an
additive (m, qn)-code A over Fqk .

{Γ′ | Γ′ represents A′ equivalent to A} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

Our new algorithm solves the similar problem for additive codes.

12 / 20

Outline Introduction Group Action The Algorithm

Linear and additive codes (another point of view)

The case k 6= 1 (Y. Edel)

The rows of a matrix representation Γ of C generate an
additive (m, qn)-code A over Fqk .

{Γ′ | Γ′ represents A′ equivalent to A} =
((GLn×GLm

k) o (Sm ×Aut(Fq))) · Γ

Corollary

Our new algorithm solves the similar problem for additive codes.

12 / 20

Outline Introduction Group Action The Algorithm

The algorithm for linear codes

Backtracking over Sm permutes columns

(γ0γ1γ2γ3)

(γ0|γ1γ2γ3)

b

b b

b

b b

b

b b

(γ1|γ0γ2γ3) (γ2|γ1γ0γ3) (γ3|γ1γ2γ0)

13 / 20

Outline Introduction Group Action The Algorithm

The algorithm for linear codes

Minimize fixed columns, not changing the
previously fixed using the remaining part of
the group (GLn×GLm

k) ⋊ Aut(Fq)

(γ0γ1γ2γ3)

(e0|γ̃1γ̃2γ̃3)

b

b b

b

b b

b

b b

(γ1|γ0γ2γ3) (γ2|γ1γ0γ3) (γ3|γ1γ2γ0)

13 / 20

Outline Introduction Group Action The Algorithm

The algorithm for linear codes

Canonical Form equals mini-
mum over all leaf nodes

b

b

b

b b

b

b

CF

b

b

b b

b

b

b b

b

b b

b

b b

b

b

b b

b

b b

b

b b

b

b

b b

b

b b

b

b b

14 / 20

Outline Introduction Group Action The Algorithm

The algorithm for linear codes

Prune subtrees rooted in
nonoptimal initial parts

b

b

b

b b

b

b

CF

b

b

b b

b

b

b b

b

b b

b

b b

b

b

b b

b

b b

b

b b

b

b

b b

b

b b

b

b b

14 / 20

Outline Introduction Group Action The Algorithm

The algorithm for linear codes

Automorphisms can be found
by paths connecting equal leafs

b

b

b

b b

b

b

CF

b

b

b b

b

b

b b

b

b

CF

b

b

b b

b

b

b b

b

b b

b

b b

b

b

b b

b

b b

b

b b

CF
α

14 / 20

Outline Introduction Group Action The Algorithm

The algorithm for linear codes

Automorphisms can be used for
further pruning the tree

b

b

b

b b

b

b

CF

b

b

b b

b

b

b b

b

b

CF

b

b

b b

b

b

b b

b

b b

b

b b

b

b

b b

b

b b

b

b b

CF
α α

α2

14 / 20

Outline Introduction Group Action The Algorithm

Improvement: Refinements

Try to distinguish columns by
“properties” (invariant under
the remaining group action)

(γ0γ1γ2γ3γ4)←− S5 acting

(γ2γ4|γ0γ1γ3)←− S2 × S3 acting

(γ2|γ4|γ0γ1γ3)

(γ2|γ4|γ0γ1γ3)

(γ4|γ2|γ0γ1γ3)

(γ4|γ2|γ0γ1γ3)

15 / 20

Outline Introduction Group Action The Algorithm

Improvement: Refinements

Try to distinguish columns by
“properties” (invariant under
the remaining group action)

(γ0γ1γ2γ3γ4)←− S5 acting

(γ2γ4|γ0γ1γ3)←− S2 × S3 acting

(γ2|γ4|γ0γ1γ3)

(γ2|γ4|γ0γ1γ3)

(γ4|γ2|γ0γ1γ3)

(γ4|γ2|γ0γ1γ3)

=⇒ Ordering on “properties” allows further pruning.

15 / 20

Outline Introduction Group Action The Algorithm

Refinement in the case of linear codes

r = 1r = 1r = 1

r = n − 1

Example: Incidence with hyper-
planes

16 / 20

Outline Introduction Group Action The Algorithm

Refinement in the case of linear codes

r = 1r = 1r = 1r = 1

r = n − 1

r = 1

Example: Incidence with hyper-
planes

16 / 20

Outline Introduction Group Action The Algorithm

Refinement in the case of linear codes

r = 1r = 1r = 1

r = n − 1

r = 1r = 1

Example: Repeat process until
stable

16 / 20

Outline Introduction Group Action The Algorithm

Work in progress: Canonization of network codes

Idea: Adapt the algorithm for linear codes to be used for constant
dimension codes.

17 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code

r = k

r = 1

18 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code using
the refinement like above

r = k

r = 1

18 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code, i.e.
some union of equally colored points

r = k

r = 1

Γ
γ1 γ2

18 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

Outline Introduction Group Action The Algorithm

Canonization of network codes

Adaption of the algorithm

Root node is identified by(
γ0 . . . γx−1 U0 . . . Um−1

)

Backtracking over Sx × Sm

Refinement of Sx × Sm via incidence between γ0, . . . , γx−1

and U0, . . . ,Um−1

Like before

Restriction of GLn oAut(Fq) by minimization of fixed
columns γi

Pruning whenever some node(
γ̃π(0) . . . γ̃π(x−1) Ũσ(0) . . . Ũσ(m−1)

)
is identified

to be nonoptimal

Use known automorphisms for pruning.

19 / 20

	Outline
	Introduction
	Group Action
	The Algorithm

