Isometry and Automorphisms of Constant
Dimension Codes

Thomas Feulner

University of Bayreuth

Fql0
July 12, 2011

Joint work with A.-L. Trautmann (University of Zurich)

Outline

Network Coding

Outline;

@ Introduction to Network Coding

N)

20

Outline

Network Coding

Outline:
@ Introduction to Network Coding

@ Equivalence of constant dimension codes

N)

20

Outline

Network Coding

Outline:
@ Introduction to Network Coding
@ Equivalence of constant dimension codes

@ Rephrase Equivalence in terms of a finite group action

)

20

Outline

Network Coding

Outline:
@ Introduction to Network Coding
@ Equivalence of constant dimension codes
@ Rephrase Equivalence in terms of a finite group action

@ Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

N)

20

Outline

Network Coding

Outline:
@ Introduction to Network Coding
@ Equivalence of constant dimension codes
@ Rephrase Equivalence in terms of a finite group action

@ Algorithm for the calculation of unique orbit representatives
and the stabilizer for some given linear code

@ Generalization for network codes

)

20

Introduction

Network Coding

Projective Geometry

The projective geometry PG(FZ) is the set of all subspaces of Fg
ordered by inclusion.

Introduction

Network Coding

Projective Geometry

The projective geometry PG(FZ) is the set of all subspaces of Fg
ordered by inclusion.

Network Code
A network code C is a subset of the projective geometry PG(]Fg).

Introduction

Network Coding

Projective Geometry

The projective geometry PG(FZ) is the set of all subspaces of Fg
ordered by inclusion.

Network Code
A network code C is a subset of the projective geometry PG(]Fg).

Constant Dimension Code

C is called constant dimension code if

Introduction

Network Coding

Projective Geometry

The projective geometry PG(FZ) is the set of all subspaces of Fg
ordered by inclusion.

Network Code
A network code C is a subset of the projective geometry PG(Fg).

Constant Dimension Code

C is called constant dimension code if

@ C is a network code and

Introduction

Network Coding

Projective Geometry

The projective geometry PG(FZ) is the set of all subspaces of Fg
ordered by inclusion.

Network Code
A network code C is a subset of the projective geometry PG(Fg).

Constant Dimension Code

C is called constant dimension code if
@ C is a network code and
@ 31 <k <nsuchthat U € C = dim(U) = k

Introduction
Metric

Subspace Distance in PG(Fg)

ds(U, V) :=dim(U) 4+ dim(V) — dim(U N'V)

Introduction
Isometry

A map ¢ : PG(Fg) — PG(Fy) preserving the subspace distance, i.e.

ds(U, V) = ds(u(U), (V) VU,V € PG(F?)

is called an isometry on PG(Fg).

Introduction
Isometry

A map ¢ : PG(Fg) — PG(Fy) preserving the subspace distance, i.e.
ds(U, V) = ds((), (V) ¥ 1L,V € PG(FD)

is called an isometry on PG(Fg).

v

Let n>3,.: PG(F2) — PG(F?):

¢ isometry with ¢({0}) = {0} <= ¢ is an order preserving map

Introduction
Isometry

Fundamental Theorem of Projective Geometry

Let n >3 and ¢ : PG(F7) — PG(IFg) isometry with ¢({0}) = {0},
if and only if

t=(A,a) € PTL, = (GL, /Zp) x Aut(Fg)

(the projective semilinear group).

6/20

Introduction
Equivalence

Definition

Two network codes C, C’ are called equivalent if and only if there
is an isometry ¢ : PG(Fg) — PG(Fg) with «({0}) = {0} such that
(C)=C".

Introduction
Equivalence

Definition

Two network codes C, C’ are called equivalent if and only if there
is an isometry ¢ : PG(Fg) — PG(Fg) with «({0}) = {0} such that
(C)=C".

Due to the transmission model applied in random network coding
it is also reasonable to demand ¢({0}) = {0} for the definition of
equivalence of network codes.

Group Action

In terms of finite group actions

Let C be a constant dimension code. Calculate the

Group Action

In terms of finite group actions

Let C be a constant dimension code. Calculate the
o stabilizer Aut(C) under the action of PI'L,,

Group Action

In terms of finite group actions

Let C be a constant dimension code. Calculate the
o stabilizer Aut(C) under the action of PI'L,,
@ a uniquely defined representative of the orbit PI'L, - C

Group Action

In terms of finite group actions

Let C be a constant dimension code. Calculate the

o stabilizer Aut(C) under the action of PI'L,,

@ a uniquely defined representative of the orbit PI'L, - C
efficiently.

Group Action

Matrix Representation

Matrix Representation

Let C={U;|i=0,...,m— 1} be a constant dimension code,
with U; = colspace(U;), U; € IFZX".

Group Action

Matrix Representation

Matrix Representation

Let C={U;|i=0,...,m— 1} be a constant dimension code,
with U; = colspace(U;), U; € IFZX".

o N=(Up...Un-1) €]Fng’” is a matrix representation of C.

Group Action

Matrix Representation

Matrix Representation

Let C={U;|i=0,...,m— 1} be a constant dimension code,
with U; = colspace(U;), U; € IFZX".

o N=(Up...Un-1) €]Fng’” is a matrix representation of C.

@ The set of all matrix representations of C is equal to the orbit
(GLY xSm) - T.

Group Action

Matrix Representation

Matrix Representation

Let C={U;|i=0,...,m— 1} be a constant dimension code,
with U; = colspace(U;), U; € IFZX".
o N=(Up...Un-1) €]Fng’” is a matrix representation of C.

@ The set of all matrix representations of C is equal to the orbit
(GLY xSm) - T.

For ,,useful” constant dimension codes it will allways be the case
that the rank of I is equal to n.

20

Group Action

Matrix Representation

Matrix Representation

Let C={U;|i=0,...,m— 1} be a constant dimension code,
with U; = colspace(U;), U; € IFZX".
o N=(Up...Un-1) €]Fngm is a matrix representation of C.

@ The set of all matrix representations of C is equal to the orbit
(GLY xSm) - T.

RENEILS

For ,,useful” constant dimension codes it will allways be the case
that the rank of I is equal to n.

Monomial Matrices

If k=1 then GLyx =Fy and GL}' x S, is equal to the set of
monomial matrices.

| \

Group Action

Equivalence

Equivalence

10/20

Group Action

Equivalence

Equivalence

@ Two matrix representations I', [’ € IE“ng’” are called equivalent
if the corresponding constant dimension codes are equivalent.

10/20

Group Action

Equivalence

Equivalence
@ Two matrix representations I', [’ € IE“ng’” are called equivalent
if the corresponding constant dimension codes are equivalent.
o {I"| " equivalent to '} =
((GLn x GLY") (Sm x Aut(Fg))) - T

10/20

Group Action

Linear and additive codes (another point of view)

The special case k =1

11/20

Group Action

Linear and additive codes (another point of view)

The special case k =1

@ The rows of a matrix representation I of C generate a linear
[m, n]g-code L.

11/20

Group Action

Linear and additive codes (another point of view)

The special case k =1

@ The rows of a matrix representation I of C generate a linear
[m, n]g-code L.

@ {I"" | T’ generator matrix of L’ equivalent to L} =
((GLp X GLY) % (Sm x Aut(Fg))) - T

11/20

Group Action

Linear and additive codes (another point of view)

The special case k =1

@ The rows of a matrix representation I of C generate a linear
[m, n]g-code L.

@ {I"" | T’ generator matrix of L’ equivalent to L} =
((GLp X GLY) % (Sm x Aut(Fg))) - T

’

Corollary

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.

11/20

Group Action

Linear and additive codes (another point of view)

The special case k =1

@ The rows of a matrix representation ' of C generate a linear
[m, n]g-code L.

o {I"" | T’ generator matrix of L’ equivalent to L} =
((GLp x GLY) % (Sm x Aut(Fyg))) - T

We can calculate the automorphism group of C using the
algorithms (Leon 1982, F. 2009) from classical coding theory.
But, k =1 does not yield applicable constant dimension codes.
Hence, we will suppose k > 1 in the following.

11/20

Group Action

Linear and additive codes (another point of view)

The case k # 1 (Y. Edel)

12/20

Group Action

Linear and additive codes (another point of view)

The case k # 1 (Y. Edel)

@ The rows of a matrix representation I of C generate an

additive (m, g")-code A over F .

12/20

Group Action

Linear and additive codes (another point of view)

The case k # 1 (Y. Edel)

@ The rows of a matrix representation I of C generate an
additive (m, g")-code A over F

qk.
o {I'""| " represents A’ equivalent to A} =
((GLn X GLT') % (Sm x Aut(Fg))) - T

12/20

Group Action

Linear and additive codes (another point of view)

The case k # 1 (Y. Edel)

@ The rows of a matrix representation I of C generate an
additive (m, g")-code A over F

qk.
o {I'""| " represents A’ equivalent to A} =
((GLp x GLY) X (Sm x Aut(Fq))) - T

Our new algorithm solves the similar problem for additive codes.

12/20

The Algorithm

The algorithm for linear codes

| Backtracking over S, permutes columns h

(70717273)

(70 vwmm{s) m%mm)

13 /20

The Algorithm

The algorithm for linear codes

Minimize fixed columns, not changing the
previously fixed using the remaining part of
the group (GL, x GL}") x Aut(F)

(70717273)

eol'mm (m |’YO’Y273 (v2[v17073) Y3]717270)

KA

13 /20

The Algorithm

The algorithm for linear codes

Canonical Form equals mini-
mum over all leaf nodes

CF

14 /20

The Algorithm

The algorithm for linear codes

Prune subtrees rooted in
nonoptimal initial parts

CF

14 /20

The Algorithm

The algorithm for linear codes

Automorphisms can be found
by paths connecting equal leafs

CF ~~----"TCF CF

14 /20

The Algorithm

The algorithm for linear codes

Automorphisms can be used for
further pruning the tree

-~ P

14 /20

The Algorithm

Improvement: Refinements

Try to distinguish columns by
“properties” (invariant under
the remaining group action)

|
|
| |
| | .

1 ([707173) +— S2 X S3 acting

[RR— (R — —_——

F———— == —_——a AN — 1

(v2lr4lr071793) | 1 (al720707173)
[
[
(72l !’Yo“/ﬂa)Jl 1 (7al72707173)

|
|
|
|
|
-4

15/20

The Algorithm

Improvement: Refinements

the remaining group action)

(v2174]v07173) :

|
|
(72|74 |v07173) |

= Ordering on “properties”

Try to distinguish columns by
“properties” (invariant under

(7val721707173)

(74\ \707173)

|
|
|
|
|
-4

allows further pruning.

15/20

The Algorithm

Refinement in the case of linear codes

Example: Incidence with hyper-
planes

r=n-—1

16 /20

The Algorithm

Refinement in the case of linear codes

Example: Incidence with hyper-
planes

r=n-—1

16 /20

The Algorithm

Refinement in the case of linear codes

Example: Repeat process until
stable

r=n-—1

16 /20

The Algorithm

Work in progress: Canonization of network codes

Idea: Adapt the algorithm for linear codes to be used for constant
dimension codes.

17 /20

The Algorithm

Canonization of network codes

|Step 1: Choose appropriate linear code h

® O ® & =«

18 /20

The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code using
the refinement like above

18 /20

The Algorithm

Canonization of network codes

Step 1: Choose appropriate linear code, i.e.
some union of equally colored points

18 /20

The Algorithm

Canonization of network codes

Adaption of the algorithm

19/20

The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO Um_1)

19/20

The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO oo Um_1)
@ Backtracking over S, x Sp,

19/20

The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO oo Um_1)
@ Backtracking over S, x Sp,

@ Refinement of Sy x S, via incidence between 7o, ..., Vx—1
and Uy, ..., Un_1

19/20

The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO oo Um_1)
@ Backtracking over S, x Sp,

@ Refinement of Sy x S, via incidence between 7o, ..., Vx—1
and Uy, ..., Un_1

Like before

19/20

The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO oo Um_1)
@ Backtracking over S, x Sp,

@ Refinement of Sy x S, via incidence between 7o, ..., Vx—1
and Uy, ..., Un_1

Like before

@ Restriction of GL, xAut(F,) by minimization of fixed
columns ~;

19/20

The Algo

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO oo Um_1)
@ Backtracking over S, x Sp,

@ Refinement of Sy x S, via incidence between 7o, ..., Vx—1
and Uy, ..., Un_1

Like before

@ Restriction of GL, xAut(F,) by minimization of fixed
columns ~;

@ Pruning whenever some node

(;7”(0) 000 P"?ﬂ(x_l) ‘ UO’(O) 000 Da(m—l)) is identified
to be nonoptimal

rithm

19/20

The Algorithm

Canonization of network codes

Adaption of the algorithm

@ Root node is identified by
(Yo cee Ux—1 ‘ UO oo Um_1)
@ Backtracking over S, x Sp,

@ Refinement of Sy x S, via incidence between 7o, ..., Vx—1
and Uy, ..., Un_1

Like before

@ Restriction of GL, xAut(F,) by minimization of fixed
columns ~;

@ Pruning whenever some node

(;7”(0) 000 P"?ﬂ(x_l) ‘ UO’(O) 000 Da(m—l)) is identified
to be nonoptimal

@ Use known automorphisms for pruning.

19/20

	Outline
	Introduction
	Group Action
	The Algorithm

