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Mmj11|8|7|6 ] 5 4 3 2 2 1

12|12| 9 |8 |7 8 ] 4 4 3 2 2 1

18|13 (10| 9 | & 7 ] 5 4 4 3 2 2 1

14 |14 |11 |10 | 9 8 7 ] 5 4 4 3 2 2 1

15 | 15|12 | 11 |10 8 8 7 ] 5 4 4 3 2 2 1

16 |16 |12 |12 [ 11 El 8 8 7 6 5 4 4 3 2 2 1

17 |17 |18 |12 |12 10 9 8 8 7 ] 5 4 4 3 2 2 1

18 |18 |14 [13 [12 10 10 9 8 6 6 5 G 3 3 2 2 1

19 | 18 | 15 | 14 [ 12 11 10 9 8-9 8 7 ] ] 5 4 3 3 2 2 1

20 | 20 |16 |15 [ 13 12 11 10 8-9 8 7 8 ] 5 4 3 3 2 2 1

nk| 1 2 3|4 5 6 7 8 9 10 m 12 13 15 16 17 18 19 20 ‘
21|21 |18 |16 | 14 13 12 11 10 9 8-9 7-8 7 8 58 5 4 3 3 2 2

22 |22 |17 |16 |15 14 1213 12 11 10 El 8-9 7-8 8-7 5-8 4-5 4 3 2 2

23 |23 |18 |16 |16 15 13 12-13 12 11 10 El 8-9 7-8 8-7 ] 5-6 4-5 4 3 2

24 |24 |19 |17 |16 16 14 13 12-13 12 11 10 9 8-9 7-8 87 ] 5-6 4-5 4 3

25 |25|20 |18 |17 16 15 14 12-13 | 12-13 12 11 10 9 8-9 7-8 67 6 56 4-5 4

26 (26 |20 (19 |18 16 16 14-15 | 13-14 | 1218 | 1218 12 11 10 9 8-9 7-8 6-7 6 5-6 4-5

27 |27 |21 |20 (19 17 16 15-16 | 1415 | 13-14 | 1213 | 12-13 12 11 10 9 7-9 6-8 6-7 6 5-6 4
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Similarly we say that generator (parity check) matrices are
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Transversal of equivalence classes

T(n, k,d,d", q) denotes a complete set of non-equivalent parity
check matrices of all [n, k, > d]gl—codes.

A\




A canonical form algorithm

Unique Orbit Representatives

With the help of the algorithm

T. Feulner, The Automorphism Groups of Linear Codes and
Canonical Representatives of Their Semilinear Isometry Classes,
Advances in Mathematics of Communication, 3, 363-383, (2009)

we can compute unique orbit representatives and hence determine
T(n, k,d,d*, q) from a superset T(n, k, d, d*, q) very efficiently.




A canonical form algorithm

Unique Orbit Representatives
With the help of the algorithm

T. Feulner, The Automorphism Groups of Linear Codes and
Canonical Representatives of Their Semilinear Isometry Classes,
Advances in Mathematics of Communication, 3, 363-383, (2009)

we can compute unique orbit representatives and hence determine
T(n, k,d,d*, q) from a superset T(n, k, d, d*, q) very efficiently.

Problem

Compute small supersets T(n, k, d, d*, q) iteratively.




Let C be an [n, k, d]gl—code. Then there exists an
dt+

>|d—
[n—dt k—dt+1,> d];[ ¢ 1—code.
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Construction Y;

Let C be an [n, k, d]gl—code. Then there exists an

>[4]
[n—dt k—dt+1,>d];" 7 '-code.

Proof.
Without loss of generality C has a parity check matrix of the

following form
!/
A= ( A X )
On—dL C

with (0,_,1,c) € C*+ a codeword of minimum distance
wt(c) = d*. The code with parity check matrix A’ has got the
desired parameters. O
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Inverting Construction Y;

Iteration Starting Point

Let S be an arbitrary transversal of parity check matrices of all

>[4]
[n—dt k—dt+1,>d]g' 7 '-codes.

Existence of predecessors

Each equivalence class of parity check matrices of the
1 0 o
[n, k, > d]g -codes contains at least one matrix

= A’ X
=0, 1)

with
e ANesS
o X ¢ anfkfl)de

with lexicographically ordered columns




A special transversal

Choosing the smallest matrix

= A’ X
3= (or, 1)

in each equivalence class defines a transversal T(n, k, d, d+, s, q).
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Computation of T(n, k,d,1,S,q)
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An Example: Does a [21, 14, 6]4-code exist?

From http://codetables.de we determine that d* € {9,10,11}.
The following table gives the number of equivalence classes for
d > 6, distinguished by d*:

n ‘n—k:6 ‘n—kz?

10
11

12 | 19...5% 6!

13 11
14 22
15 37
16 413
17 59
18 6°
19 71
20 gl
21 90
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An Example: Does a [21, 14, 6]4-code exist?

From http://codetables.de we determine that d* € {9,10,11}.
The following table gives the number of equivalence classes for

d > 6, distinguished by d*:

n ‘n—k:6 ‘

n—k=7

10
11
12
13
14
15
16
17
18
19
20
21

10..
10..
10..

.30 42
.40 5!
.50 6!

12
251
31219
47431
53797
6261
74

80

100
110
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Results

Nonexistence

There are no codes with parameters

e [35,10,13]2
e [22,8,10]3, [24,14,7]3, [28,21,5]3
e [19,8,9]4, [21,14,6]4, [22,16,5]a, [27,17,8]4, [30,21,7]4,
[39,27,9]4
e [16,5,10]s, [16,6,9]s, [17,8,8]5
e [15,8,7]7, [26, 20, 6];
e [30,23,7]s, [37,31,5]s
and 391 derived new upper bounds.
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v

There is a [17,11, 6]9-code.

13 /14



Thank you for your attention.
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