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Abstract Starting from a linear [n, k, d]q code with dual distance d⊥, we may

construct an [n−d⊥, k−d⊥+1,≥ d]q code with dual distance at least
l
d⊥

q

m
using

construction Y1. The inverse construction gives a rule for the classification of all
[n, k, d]q codes with dual distance d⊥ by adding d⊥ further columns to the parity
check matrices of the smaller codes. Isomorph rejection is applied to guarantee a
small search space for this iterative approach.

Performing a complete search based on this observation, we are able to prove
the nonexistence of linear codes for 16 open parameter sets [n, k, d]q,
q = 2, 3, 4, 5, 7, 8. These results imply 217 new upper bounds in the known ta-
bles for the minimum distance of linear codes and establish the exact value in 109
cases.
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1 Introduction

Let Fnq denote the n-dimensional vector space over the finite field Fq. The Hamming
weight wt(v) of a vector v ∈ Fnq is the number of its nonzero entries. The Hamming
distance dH(u, v) = wt(u − v) counts the number of positions where the vectors
u, v ∈ Fnq are different. A linear [n, k, d]q code is a k-dimensional subspace of Fnq
such that any two different codewords c, c′ ∈ C have Hamming distance dH(c, c′)
at least d and there is a pair whose distance is equal to d. The parameter d is
called the minimum distance of the code C and is equal to the minimum weight
of the nonzero codewords.
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Any matrix Γ ∈ Fk×nq whose rows form a basis of the [n, k, d]q code C is called

a generator matrix of C. Conversely, any matrix ∆ ∈ F(n−k)×n
q of full row rank

with
C = {w ∈ Fnq | w ·∆

T

= 0} (1)

is called a parity check matrix of C. Equation (1) shows that an (n−k)×n-matrix
∆ of full row rank defines an [n, k, d]q code if and only if there exists d columns
that are linearly dependent and any d− 1 columns of ∆ are linearly independent.
The dual code C⊥ of a linear code C is the subspace of vectors that are orthogonal
to C under the standard bilinear form, i.e.

C⊥ := {w ∈ Fnq | ∀c ∈ C : 〈c, w〉 = 0}.

The parity check (generator) matrices of a code C are exactly the generator (parity

check) matrices of C⊥. We say that C is an [n, k, d]d
⊥

q code if C is an [n, k, d]q
code and its dual code C⊥ has minimum distance d⊥.

A mapping ι : Fnq → Fnq is called an isometry, if it respects the Hamming
metric. Two codes C,C′ which are related to each other via the application of an
isometry ι, i.e. C′ = ι(C), have the same error-correcting capability.

In general, subspaces are not preserved under some arbitrary isometry. Hence,
we engage in the most general subgroup under this additional condition, which
is for n ≥ 3 equal to the group of semilinear isometries [2]. A mapping ι :
Fnq → Fnq is called semilinear, if there exists an automorphism α of Fq such
that, for all u, v ∈ Fnq , κ ∈ Fq the following holds ι(u + v) = ι(u) + ι(v) and
ι(κu) = α(κ)ι(u).

The isometry ι of Fnq is representable by some monomial matrix M ∈ GLn(Fq)
and a field automorphism α, i.e.

ι(v) = α(v)M
T

, for all v ∈ Fnq ,

where α is element-wisely applied to the vector v. We also write α(∆) for the
element-wise application of α to a matrix ∆ over Fq.

Two codes C,C′ are equivalent, if there exists a semilinear isometry ι : Fnq → Fnq
with ι(C) = C′. Two parity check matrices ∆,∆′ ∈ F(n−k)×n

q are called equivalent,
if they form parity check matrices of equivalent codes.

Proposition 1 C is equivalent to C′ if and only if C⊥ is equivalent to C′⊥.

Hence, if C is an [n, k, d]d
⊥

q code, so is C′.

Proof The semilinear isometry ι with ι(C) = C′ is representable by some monomial
matrix M ∈ GLn(Fq) and a field automorphism α. It is easy to prove that ι⊥(v) :=
α(v)M−1 also defines a semilinear isometry on Fnq and that ι⊥(C⊥) = C′⊥. ut

The goal of the paper is to classify all linear codes with given parameters

[n, k,≥ d]d
⊥

q up to semilinear isometry. This means that we compute a set T of
parity check matrices representing all nonequivalent codes with these parameters.
Within this work, we just attack the problem of calculating reasonable small sets
T which contains the set T , see Section 3.1. Afterward, the algorithm [6] is used
to compute a unique representative of the equivalence class for each element of
the candidate set T . Hence, we are able to remove equivalent codes and we are
left with T , for more details see Section 3.2.
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The paper is organized as follows. The next section repeats some elementary
constructions to derive new codes from old and gives their parameters. The main
algorithm is developed in Section 3. It is based on construction Y1, which is in-
verted. This method adopts the approaches described in [4], [5] to be used for a full
classification of linear codes over arbitrary finite fields. Our contribution compared
to [5] is the fact that we provide a full classification. The algorithm described in
[4] is limited to binary codes. We have generalized this approach allowing arbi-
trary fields and semilinear isometry. Furthermore, we combined the ideas of their
procedures Bruteforce and Extend in one procedure.

The rest of the paper states the results and consequences on the tightening of
upper bounds on the minimum distances. Furthermore, we give an application [7]
of the algorithm for proving the nonexistence of an automorphism of order 7 for a
self-dual binary [72, 36, 16] code.

Within this work, we suppose some total ordering on the finite field Fq, where
0 < 1 < µ, for all µ ∈ Fq \ {0, 1}. Vectors are ordered colexicographically. Fur-
thermore, matrices are interpreted as lexicographically ordered tuples of vectors.
The notation µn with µ ∈ Fq denotes the all-µ vector of length n.

2 Code constructions

In this section we describe several methods to derive new codes from old. We will
also give their parameters in terms of the old.

Definition 1 (Puncturing) The puncturing of a linear code C in a coordinate
i ∈ {0, . . . , n− 1} is a linear code of length n− 1 achieved by eliminating the i-th
coordinate. This code will be denoted by Pi(C).

Definition 2 (Shortening) Let C be a linear code of length n and consider the
subspace C(i) of codewords which are zero in the coordinate i ∈ {0, . . . , n − 1}.
Puncturing C(i), which is also linear, in the coordinate i gives a linear code Si(C)
of length n− 1 and this method is called the shortening of C in i.

Proposition 2 [9, Theorem 1.5.7] Let C be a linear code. Then Si(C
⊥) = Pi(C)⊥

and Pi(C
⊥) = Si(C)⊥.

Proposition 3 [9, Theorem 1.5.1] Let C be an [n, k, d]d
⊥

q code and i ∈ {0, . . . , n−
1}.

– If d > 1, Pi(C) is an [n−1, k, d′]≥d
⊥

q code where d′ = d−1 if C has a minimum
weight codeword with nonzero i-th coordinate and d′ = d otherwise.

– When d = 1, Pi(C) is an [n− 1, k, 1]≥d
⊥

q code if C has no codeword of weight
1 whose nonzero entry is in coordinate i; otherwise, if k > 1, Pi(C) is an

[n− 1, k − 1,≥ 1]≥d
⊥

q code.

Corollary 1 Let C be an [n, k, d]d
⊥

q code, then Si(C) is an [n− 1, k′,≥ d]d
′⊥

q code

with k′ ∈ {k − 1, k} and d′⊥ ≥ d⊥ − 1.

Definition 3 (Residual code) The residual code Res(C, c) with respect to a
codeword c ∈ C is the restriction of C to the zero coordinates of c.
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Proposition 4 [9, Corollary 2.7.2] Let C be an [n, k, d]d
⊥

q code and choose c ∈ C
with wt(c) = d. Then Res(C, c) is an

h
n− d, k − 1,≥

l
d
q

mi
q

code.

The construction of the residual code corresponds to the wt(c)-fold application
of the puncturing operation on the support of c. Therefore, Res(C, c) has dual
minimum distance ≥ d⊥.

Definition 4 (Construction Y1) Applying the residual code construction to a
minimum word of the dual code is called construction Y1. It leads to a code with

parameters
h
n− d⊥, k − d⊥ + 1,≥ d

i≥l
d⊥
q

m
q

.

3 Inverting construction Y1

In this section we present the algorithm that classifies all linear codes up to semilin-
ear isometry given the parameters n, k, d, d⊥, q. These will be fixed in the following.
First of all, we define a set T (n, k, d, d⊥, q) of parity check matrices representing

all nonequivalent codes with parameters [n, k,≥ d]d
⊥

q . In general, we will call such
a set a transversal of parity check matrices.

The method is based on an iterative approach. Starting point for this iterative
method is a transversal S of those parity check matrices whose parameters are
defined by construction Y1, i.e. having parameters [n − d⊥, k − d⊥ + 1,≥ d]q.
This set S will also be fixed within this section. Afterward, we iteratively add d⊥

further columns to these matrices and check whether this defines an element of
T (n, k, d, d⊥, q) or not. Isomorph rejection is applied in all intermediate steps to
guarantee a small search space.

3.1 Building a candidate set

We start with the definition of the transversal T (n, k, d, d⊥, q). Since these matrices
should have a special block structure, we first have to prove that each equivalence

class of [n, k,≥ d]d
⊥

q codes will be represented.

Lemma 1 Let ∆ be a parity check matrix of an [n, k, d]d
⊥

q code. The set

E(∆,S) :=

( e∆ =

„
∆′ X

0n−d⊥ 1d⊥

«˛̨̨̨
∆′ ∈ S,X ∈ F(n−k−1)×d⊥

q ,e∆ equivalent to ∆

)
is not empty.

Proof The dual code C⊥ generated by ∆ has minimum distance d⊥, so we can
construct an equivalent parity check matrix

∆ =

 
∆
′

X ′

0n−d⊥ 1d⊥

!
.

Since S is a transversal of all parity check matrices of all linear [n−d⊥, k−d⊥+1,≥
d]q codes, there exists a unique ∆′ ∈ S equivalent to ∆

′
. Furthermore, we can find
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an invertible matrix A, a monomial matrix M and a field automorphism α with

∆′ = Aα(∆
′
)M

T
. Therefore, 
A 0n−k−1

T

0n−k−1 1

!
α(∆)

„
M 0(n−d⊥)×d⊥

0d⊥×(n−d⊥) Id⊥

«T

=

 
∆′ Aα(X ′)M

T

0n−d⊥ 1d⊥

!
∈ E(∆,S).

ut

Using this lemma we can now define the transversal. It will contain the minimal
element of E(∆,S) for each parity check matrix ∆.

Corollary 2 The set

T (n, k, d, d⊥, S, q) :=


min(E(∆,S))

˛̨̨̨
∆ is a parity check matrix

of an [n, k,≥ d]d
⊥

q code

ff

is a transversal of all [n, k,≥ d]d
⊥

q codes. The last d⊥ columns of a matrix ∆ ∈
T (n, k, d, d⊥, S, q) are ordered lexicographically.

In the following we will show how to compute the transversal T (n, k, d, d⊥, S, q)
by adding a further column to a transversal of parity check matrix of linear codes
of length n− 1. We have to distinguish two cases d⊥ = 1 and d⊥ > 1. These will
be treated in the following two lemmata.

Lemma 2 A matrix ∆ ∈ T (n, k, d, 1, S, q) has the following block structure ∆ =„
∆′ 0n−k−1

T

0n−1 1

«
with ∆′ ∈ S.

Proof This follows immediately from the fact that we are allowed to perform Gaus-
sian elimination on the last column for the elements of E(∆,S). ut

This proves that we reach a candidate set T (n, k, d, 1, S, q) containing

T (n, k, d, 1, S, q) by extending the matrices in S by the vector (0n−k−1, 1)
T

. The
next lemma provides an analogous rule for the second case.

Lemma 3 Let d⊥ > 1 and ∆ ∈ T (n, k, d, d⊥, S, q). Then the projection Πn−1(∆)
of ∆ onto its first n− 1 columns is an element of T (n− 1, k − 1, d, d⊥ − 1, S, q).

Proof The projection Πn−1(∆) defines a parity check matrix of an [n− 1, k− 1,≥
d]d

⊥−1
q code, since it is the shortening of the code with parity check matrix ∆ in

the last position, see Proposition 3. Furthermore, because of the structure of ∆ we
know that Πn−1(∆) ∈ E(Πn−1(∆), S). It remains to show that Πn−1(∆) is the
lexicographically minimal element in E(Πn−1(∆), S).

Suppose it is not. Then there exist some matrix A ∈ GLn−k(Fq), a monomial
matrix M ′ ∈ GLn−1(Fq) and a field automorphism α such that

E(Πn−1(∆), S) 3 Aα(Πn−1(∆))M ′
T

< Πn−1(∆).
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For arbitrary λ ∈ Fq \ {0}, the matrix M =

„
M ′ 0n−1

T

0n−1 λ

«
together with α is also

a semilinear isometry. Hence,

Aα(∆)M
T

= Aα ((Πn−1(∆),∆∗,n−1))M
T

=

„
Aα(Πn−1(∆))M ′

T

, Aα(∆∗,n−1)λ

«
< ∆

where we used ∆∗,n−1 to refer to the last column of ∆.

Since the last row of Aα(∆)M
T

must have weight d⊥, we conclude that the last
entry in Aα(∆∗,n−1) must be nonzero. Hence, for the right choice of λ, this entry

is equal to 1. For this particular λ, we know on the one hand Aα(∆)M
T
∈ E(∆,S)

and on the other hand Aα(∆)M
T
< ∆, which is a contradiction. ut

Inverting this operation shows that we can build a candidate set

T (n, k, d, d⊥, S, q) ⊇ T (n, k, d, d⊥, S, q)

via extending the matrices ∆ ∈ T (n − 1, k − 1, d, d⊥ − 1, S, q) by an additional
column. Since the last d⊥ columns of the matrices in T (n, k, d, d⊥, S, q) appear in
ascending order, it is sufficient to add a column that is larger than the last column
of ∆. Furthermore, the columns must be chosen in such way that the conditions
on d and d⊥ are fulfilled.

3.2 Computing the transversal

The transversal T (n, k, d, d⊥, S, q) is calculated from T (n, k, d, d⊥, S, q) with the
help of the canonical form algorithm described in [6]. This algorithm takes a parity
check matrix of a linear code and computes its canonical form, i.e. the parity check
matrix of some equivalent code. The result is unique for all codes in this equivalence
class.

The canonical form of a parity check matrix ∆ ∈ T (n, k, d, d⊥, S, q) is in general
not equal to ∆. Therefore, T (n, k, d, d⊥, S, q) is traversed in ascending order and
we calculate the canonical form of each of these matrices. Now, the elements of
T (n, k, d, d⊥, S, q) are exactly those, which produce its canonical form for the first
time. This matrix and its canonical form will be stored at the same time.

The candidate sets T (n − δ, k − δ, d, d⊥ − δ, S, q), 0 ≤ δ ≤ d⊥ − 1 will be
constructed in a depth first search approach. This means that whenever we add a
parity check matrix to the set T (n− δ, k − δ, d, d⊥ − δ, S, q) we will first build its
successors in T (n− δ+ 1, k− δ+ 1, d, d⊥− δ+ 1, S, q) by adding a further column.
This agrees with the necessity of traversing the candidate sets in ascending order.
Moreover, this approach simplifies the test on the necessary conditions on d and
d⊥ − δ by a recursive update of prohibited columns.

Remark 1 Let eS ⊆ S be the subset of parity check matrices which generate a linear

code of dual minimum distance ≥
l
d⊥

q

m
. Since construction Y1 applied to a linear

code with parameters [n, k, d]d
⊥

q produces a linear code with dual distance ≥
l
d⊥

q

m
,

we can similarly prove Lemma 1 for eS and hence analogously define the transversal
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T (n, k, d, d⊥, eS, q). Therefore, if we are not interested in the transversals T (n −
δ, k − δ, d, d⊥ − δ, S, q), 1 ≤ δ ≤ d⊥ − 1 we are also allowed to start with eS
and extend those matrices by the same methods. For δ 6= 0 the computed sets
T (n− δ, k− δ, d, d⊥ − δ, eS, q) may not define transversals. This is only guaranteed

for those parameters with
l
d⊥

q

m
=
l
d⊥−δ
q

m
.

4 Results

The online databases [8], [10] maintain lower and upper bounds on the minimum
distance of a linear [n, k, d]q code for several prime powers. With the help of the
algorithm developed in Section 3 we attacked small open cases.

In 16 cases – see Table 1 for the corresponding parameters – the nonexistence
of a linear code meeting the upper bound in both databases is proved. These
results will be described in Subsection 4.1. Furthermore, if an [n, k, d]q code does
not exist, we conclude that a linear code with parameters [n + 1, k, d + 1]q and
[n+ 1, k+ 1, d]q also cannot exist, since otherwise puncturing or shortening would
give a contradiction. The puncturing ensures that the entries for the upper bounds
in [8] ([10]) can only increase by one in vertical (horizontal) direction, whereas the
shortening operation gives decreasing values on all diagonals from the upper-left
to the lower-right.

Using construction Y1 and the residual code, we were able to exclude even
more codes. Table 2 summarizes those improvements of [8] and [10], just giving
the entry which is the origin of all conclusions via puncturing and shortening. The
number of deduced bounds in this regard (including the point itself) is noted in
the row indexed by the corresponding reference. Sometimes, these observations
lead to the same entry. In this case, it is only counted for one single parameter set
[n, k, d]q.

We used a computer program to generate all improvements compared to [8]
in Table 2, because they were easily accessible using Magma [3]. Since we did the
comparison with [10] only for these specific places by hand, there might exist other
unrecognized improvements of [10].

Table 2 shows that both databases contain parameter sets n, k, q where they
can give sharper bounds for the minimum distance than the other one. For 217
parameter sets we were able to improve the entries of both databases at the same
time. Among these improvements 109 parameter sets establish the exact value for
the minimum distance of an optimal code.

Besides these examples, we also proved that a [37, 31, 6]8 code does not ex-
ist, which is an open case in [8], but not in [10]. Similarly, we constructed two
nonequivalent [17, 11, 6]9 codes which were unknown according to [8], but [10] al-
ready gives a construction method for one of these codes. In one case, namely
for the parameters [18, 3, 15]9, we also proved that a code with these parameters
cannot exist. This is an open case in both databases [8] and [10], but on the other
hand this result is already known [1].

This section ends with an application of the algorithm where we were interested
in a full classification of all linear codes for given parameters in order to prove the
nonexistence of an automorphism of order 7 of a putative self-dual [72, 36, 16] code.

Given running times refer to an execution of our program written in C++ on
a single core of a 2.4 GHz Intel Quad 2 processor.
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q = 2 q = 3 q = 4

n 35 22 24 28 19 21 22 27 30 39
k 10 8 14 21 8 14 16 17 21 27
d 13 10 7 5 9 6 5 8 7 9

q = 5 q = 7 q = 8

n 16 16 17 15 26 30
k 5 6 8 8 20 23
d 10 9 8 7 6 7

Table 1 Parameters of nonexistent codes

q = 2 q = 3 q = 4

n 35 43 57 22 24 28 19 21 22 27 27 30 38 39 39 61 63
k 10 17 30 8 14 21 8 14 16 11 17 21 9 12 27 31 30
d 12 12 12 9 6 4 8 5 4 12 7 6 22 20 8 22 24
[8] 6 2 6 16 6 6 9 2 16 1 4 18 1 2 9 4 2
[10] 6 2 6 16 6 6 20 2 16 4 6 18 1 4 18 4 2

q = 5

n 16 16 17 24 36 36 41 47 50 56 56 80 85 85 88
k 5 6 8 9 24 25 11 37 10 10 40 49 31 44 41
d 9 8 7 12 9 8 24 7 32 37 12 24 43 32 37
[8] 1 4 24 3 1 24 2 12 17 2 2 10 1 16 16
[10] 1 4 24 3 1 22 2 11 17 2 2 0 0 0 0

q = 7 q = 8

n 15 23 26 30 60 64 66 66 30 34 76 83
k 8 7 20 6 35 47 17 25 23 7 48 28
d 6 14 5 21 21 14 42 35 6 24 24 48
[8] 12 4 6 2 63 10 3 12 10 2 15 6
[10] 12 4 4 0 0 1 0 0 4 0 0 0

Table 2 Improvements compared to [8] and [10]

4.1 Improving upper bounds

This section presents several examples for the tightening of upper bounds on the
minimum distances of linear codes. We use different approaches for the application
of our algorithm since some of the results could not be reached directly. Another
goal of this section is to give values on the cardinalities of the transversals in order
to make our results verifiable.

4.1.1 The direct method

This section gives all the results which were directly achieved. This means that
we computed the transversal T (n, k, d, d⊥, S, q) for all feasible values of d⊥ and
recognized that these are all empty. Upper bounds for d⊥ are given by the database
[8]. Lower bounds on d⊥ can be determined by construction Y1, see Definition 4,
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n n− k = 6 n− k = 7

10 10 . . . 30 42

11 10 . . . 40 51 12

12 10 . . . 50 61 11 251

13 11 26 31219

14 22 330 47431

15 37 488 53797

16 413 564 6261

17 59 617 74

18 65 71 80

19 71 80 90

20 81 90 100

21 90 100 110

Table 3 Number of nonequivalent codes over F4 for d ≥ 6, distinguished by d⊥

taking the smallest value not leading to a contradiction with the data provided by
[8].

The next two theorems serve as examples for the necessary computations.
Furthermore, we will provide some corollaries which shows how the values in Table
2 can be derived.

Theorem 1 A [21, 14, 6]4 code does not exist.

Proof It is easy to show that the dual distance d⊥ lies in the range 9 ≤ d⊥ ≤ 11.
Table 3 gives the cardinalities of the intermediate transversals T (n, k, d, d⊥, S, q):

An entry d⊥
x

states that there are x equivalence classes of [n, k,≥ d]d
⊥

q codes.
The entries at n − k = 6 correspond to the initial sets S, whereas the entries in
the column n − k = 7 are calculated by the algorithm. The entries with d⊥ = 1
are calculated according to Lemma 2 from the entries in the left column and the
row above. By Lemma 3 we know that the entries with d⊥ ≥ 2 are calculated
from the entries written directly above. The calculation took approximately 2.5
minutes. ut

Corollary 3 A [19, 12, 6]4 and a [20, 13, 6]4 code is unique up to semilinear isom-
etry. Codes with parameters [21 + i, 14 + i, 6]4, i ≥ 0 do not exist.

Theorem 2 A [16, 5, 10]5 code does not exist.

Proof For this code we know that d⊥ = 4. There is only a single equivalence class
for codes with parameters [12, 2, 10]5. This result is easily achieved. We use one
representative to form the set S. Table 4 shows the cardinalities of the computed
transversals. The result was achieved in 18 minutes. ut

Proposition 5 Linear codes with the following parameters do not exist:

1. [16 + i, 5 + i, 10]5, i ≥ 0,
2. [36 + i, 24 + i, 10]5, i ≥ 0,
3. [21, 11, 9]5, [42, 12, 25]5,
4. [86 + i, 55 + i, 25]5, i ≥ 0.
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n n− k = 10 n− k = 11

12 10 21

13 11

14 239

15 31446

16 40

Table 4 Number of nonequivalent codes over F5 for d ≥ 10, distinguished by d⊥

Proof The codes given in the first item cannot exist since iterative shortening
would lead to the nonexistent [16, 5, 10]5 code. The values given at the second
item are derived by construction Y1. A [21, 11, 9]5 and [42, 12, 25]5 code cannot
exist since we tightened the upper bound on the dual distance d⊥ ≤ 9 which
leads together with construction Y1 to a contradiction. The nonexistence of a
[42, 12, 25]5 code implies the nonexistence of [86 + i, 55 + i, 25]5 codes, i ≥ 0, again
by construction Y1. ut

The next theorem gives more results using similar computations.

Theorem 3 Linear codes with the following parameters do not exist:

– [35, 10, 13]2
– [28, 21, 5]3
– [19, 8, 9]4, [22, 16, 5]4
– [16, 6, 9]5, [17, 8, 8]5
– [15, 8, 7]7

4.1.2 Combining the classification for the code and its dual

In this section we prove the nonexistence of a [22, 8, 10]d
⊥

3 code. The result is
achieved by combining the nonexistence results for linear codes with parameters
[22, 8,≥ 10]43, [22, 8,≥ 10]53 and [22, 14,≥ 6]103 .

Theorem 4 A [22, 8, 10]3 code does not exist.

Proof Suppose there is a linear code with parameters [22, 8, 10]3. By [8] we know
that its dual distance must be either equal to 4, 5 or 6. Table 5, which was computed
in 4 days, proves that there are no [22, 8, 10]≤5

3 codes. We were not able to finish
a classification of the transversal T (22, 8, 10, 6, S, 3).

Furthermore, the nonexistence of a [22, 8, 10]63 code can be shown by the fact
that the transversal T (22, 14, 6, 10, S′, 3) is empty, see Table 6. This result was
achieved within a minute. Note that the numbers of nonequivalent codes for n ≤ 21
is not equal to the total number since we only started from the transversal fS′ of
linear codes having dual distance at least 4, following Remark 1. ut

4.1.3 Partial results for smaller parameter sets

Like for the case above, we were able to classify linear codes with parameters
[23, 13, 7]83. But we were not able to finish the computation for d⊥ = 9. In contrast
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n n− k = 13 n− k = 14

15 12

16 10 212

17 10 . . . 20 318 112

18 10 . . . 30 47 118 2?

19 17 2134679 3?

20 21926 34273434 4?

21 361 44641 5?

22 40 50 6?

23 50 60 70 (cannot exist by dual upper bound)

Table 5 Number of nonequivalent codes over F3 for d ≥ 10, distinguished by d⊥

n n− k = 7 n− k = 8

12 1? . . . 3? 41

13 11+?

14 240+?

15 3768+?

16 44851+?

17 51817+?

18 6179+?

19 748+?

20 83+?

21 90+?

22 100

Table 6 Number of nonequivalent codes over F3 for d ≥ 6, distinguished by d⊥

to the result above, we were also not able to exclude the existence of a [23, 13, 7]93
code by the dual approach.

Nevertheless, the excluded cases for an [n, k,≥ d]δq code give a lower bound

l ≤ d⊥ which also implies that the dual distance of an [n+ i, k + i,≥ d] code has
to be greater than l + i. The result is now due to the fact that the upper bound
u(n, k, q) on the minimum distance of a linear [n, k] code does not always increase
by one if n is increased by one. Hence, as soon as this lower bound exceeds its
upper bound u(n+i, n−k, q) we have disproved the existence of an [n+i, k+i,≥ d]
code.

In the example above, we can use our partial result of the nonexistence of
a [23, 13, 7]83 code in order to prove the nonexistence of a [24, 14, 7]3 code. By
Theorem 4 we know that the minimum distance of a [24, 10]3 code is at most
9. Hence, we can us the fact that u(23, 10, 3) = u(24, 10, 3) = 9 and hence we
only have to investigate the transversal T (24, 14, 7, 9, S, 3) which is empty since
T (23, 13, 7, 8, S, 3) is already empty.

This idea was also applied in several other cases, whenever we were not able

to exclude the existence of an [n, k,≥ d]d
⊥

code for all cases of d⊥.

Theorem 5 Linear [n, k, d]q codes with parameters listed in the first column of
Table 7 do not exist.
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excluded parameters feasible d⊥ by nonexistence of missing d⊥

[24, 14, 7]3 9 [23, 13,≥ 7]≤8
3 9

[27, 17, 8]4 9 . . . 13 [21, 11,≥ 8]≤7
4 8

[30, 21, 7]4 13 . . . 16 [22, 13,≥ 7]≤8
4 9, 10

[26, 20, 6]7 18 [16, 10,≥ 6]87 9

[30, 23, 7]8 21 [16, 9,≥ 7]78 8

Table 7 Results from partial classifications for d⊥

Parameters of D1 |T (10, k, d, d⊥, 8)|
k d d⊥

3 8 4 1

4 4 4 81717

4 5 4 1854753

4 6 4 490382

5 4 4 61487808

5 5 4 3742898

5 5 5 3014997

Total 70672556

Table 8 Number of nonequivalent candidates for D1

Proof We proved the nonexistence for linear codes with parameters given in the

third column of Table 7. This implies that a linear [n, k, d]d
⊥

q code could not exist

for all of its feasible values d⊥ listed in the second column. ut

The next theorem gives one further conclusion made by the classification of
smaller codes.

Theorem 6 A [39, 27, 9]4 code does not exist.

Proof By [8] a [39, 27, 9]4 code has dual distance ≤ 21. The nonexistence of a
[19, 8,≥ 9]4 code (also proved by our method, see Table 1) implies that d⊥ ≥
21. The code derived by construction Y1 has parameters [18, 7,≥ 9]≥6

4 . By our
algorithm we prove that no such code can exist and hence there is no [39, 27, 9]4
code. ut

4.2 The automorphism group of a self-dual [72, 36, 16]2 code does not contain Z7

In [7] it is shown that a self-dual [72, 36, 16]2 code has no automorphism of order 7.
In this computational proof we were forced to classify all linear codes D1 of length
10 over F8 whose minimum distance and dual minimum distance is greater than
or equal to 4. Table 8 gives the result if one uses the symmetry of interchanging
the role of D1 and its dual D⊥1 .
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