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n, k,q are some fixed parameters.

Generator Matrix

Let C be a linear code. T € IF’C‘,X" is a generator matrix of C, if the
rows of [ form a basis of C.

| 5\

Set of Generator Matrices of a code

Let ' be some generator matrix of C. The set of all generator
matrices of C is the orbit GLx(q)r.
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Equivalence

Two linear codes C, C' are semilinearly isometric (or equivalent)
<= (p,a, )l is a generator matrix of C’, with

@ a column permutation m € S,

@ an automorphism « of IF, applied to each entry

@ a column multiplication vector ¢ € Fy"
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Semilinear Isometry

@ more general than linear or permutational isometry

@ The group is equal to the set of isometries mapping subspaces
onto subspaces

@ most general definition for linear codes (which guarantees the
image to be linear)

@ Semilinear isometry is the definition of equivalence in
projective geometry
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Goal

Canonization Algorithm Can

Input: A generator matrix [

Output: A generator matrix Can(I') which generates an
equivalent code such that the result is unique for
equivalent generator matrices.

Byproduct: The automorphism group of the code, i.e. the
stabilizer subgroup of I'.

A similar approach to the calculation of a canonical labelling of a
graph (nauty, McKay).
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Motivation

Use the algorithm to classify linear codes

Build up a database of representatives of each semilinear isometry
class.
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Basics

Motivation

Use the algorithm to classify linear codes

Build up a database of representatives of each semilinear isometry
class.

<

Leon's Algorithm

@ There is only a test on linear isometry of two codes, but no
canonical form.

@ Difficult to realize such a database without calculation of
unique representatives.

\
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Basics

Canmin

Can™"(T") = min (A, g, o, ) T

@ Some order on Fg with 0 < 1 < p,Vu € Fg \ {0,1}
e Colexicographic order on (]Ff,, <co)

@ Lexicographic ordered n-tuples of columns ((Fg)”, <lex)



Backtracking

First idea for Can™": Backtracking on S,

A naive approach — Run through all possible permutations

We systematically run through all possible permutations of the
columns using a backtracking procedure:

There are n possible choices for the preimage of 0.

ar OO e (o




Backtracking

First idea for Can™": Backtracking on S,

There are n — 1 choices for the preimage of 1 in each node.

This subtree contains all permutations S,(,l)to.



Backtracking

i-semicanonical representatives

Suppose we reached some level i (Root is on level 0 by definition).
The columns {0, ..., — 1} will not be permuted anymore!

Definition: i-semicanonical representative

Replace nodes 7l by representatives ("™ which are minimal on
the columns {0,...,i — 1}, i.e.

ni(r(irﬂ-)) ‘= min I_I,((A7 ©, a)r)
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Backtracking

i-semicanonical representatives

Suppose we reached some level i (Root is on level 0 by definition).
The columns {0, ..., — 1} will not be permuted anymore!

Definition: i-semicanonical representative

Replace nodes 7l by representatives ("™ which are minimal on
the columns {0,...,i — 1}, i.e.

ni(r(irﬂ-)) ‘= min I_I,((A7 ©, a)r)

Corollary

| A\

Can™™(I") = minycs, (™) is the minimum of all n-semicanonical
representatives of the leaf nodes.
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Backtracking

Pruning |

We can compare the i-semicanonical representatives of two nodes
on level i.
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Backtracking

Automorphisms

Two equal leaf nodes give rise to an automorphism.
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Backtracking
Automorphisms

Two equal leaf nodes give rise to an automorphism.

Let m,0 € S, be two permutations:
r(nm) — r(no)

U
(A, ¢, a) : (A, 7710, ) € Aut(T)
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Backtracking

Pruning Il — The group of known automorphisms

An automorphism give equal leaf nodes.

Let m,0 € S, be two permutations:

[(nm) — [(n0)

)
(A, ¢, a) : (A, 7710, ) € Aut(T)

13 /27



Minimal representatives of the inner orbits

Iterative Calculation of i-semicanonical representatives

We explain the algorithm by an example over F; = {0, 1, x, x?}
where x? +x+1=0and 0 < 1 < x < x°.

We want to calculate (") with

1 x x2 1 x 1
Fr=([x 0 x2 11 1
x 1 0 1 0 x
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Minimal representatives of the inner orbits

Iterative Calculation of i-semicanonical representatives

We explain the algorithm by an example over F; = {0, 1, x, x?}
where x? +x+1=0and 0 < 1 < x < x°.

We want to calculate (") with

1 x x2 1 x 1
Fr=([x 0 x2 11 1
x 1 0 1 0 x

Gaussian Elimination

Mapping the first column onto the unit vector e/ yields an
1-semicanonical representative:

14 /27



Minimal representatives of the inner orbits

Example, i =1

1 x x2 1 x 1
Fr=([x 0 x2 11 1
x 1 0 1 0 x

We can multiply T by

>

Il
X X =
o = O
= O O

to get
1 x x2 1 x 1
r@id.— o x2 x x2 x x2
0 x 1 x2 x2 0

15 /27



Minimal representatives of the inner orbits

Example, i = 2

If the column i — 1 is linearly independent from the columns with
indices {0,...,i — 2} then map it to the smallest possible unit
vector.
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Minimal representatives of the inner orbits

Example, i = 2

If the column i — 1 is linearly independent from the columns with

indices {0, ...,/ — 2} then map it to the smallest possible unit
vector.
1 x x> 1 x 1
rGid.— 1o x2 x x2 x x2
0 x 1 x> x2 0
1 0 x x2 x%2 x?
red.=1o 1 2 1 x* 1
00 0 1 x x

16 /27



Minimal representatives of the inner orbits

Question

How can we minimize the column [ x2 | ?

Equivalently:

What is the stabilizer of My((2i9)) under the inner group action?

V.
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Minimal representatives of the inner orbits

Question

How can we minimize the column | x ?

Equivalently:

What is the stabilizer of My((2i9)) under the inner group action?

V.

x X2
. x2 /1 0 x x? x? x?
rid.— » [0 1 x2 1 x2 1
0O 0 O 1 x x

17 /27



Minimal representatives of the inner orbits

Example, i =3

x X2
x2 /1 0 x x? x? x?
rid) . 01 x2 1 x2 1
0 0 0 1 x x
1 01 x x x
rGd.—fo 11 x 1 x
(0 0 0 1 x x

17 /27



Minimal representatives of the inner orbits

Example, i =3

Stabilizer for M3(I3id)?

Partition of row index set

Let p(") be the finest partition of {0,..., k — 1} such that

Vje{0,...,i—1} EIpEp(r’i):supp(l_*’j)gp

18 /27



Minimal representatives of the inner orbits

Example, i = 4

The case i = 4 is done by Rule 1.

_ 101011
r¢d.—1o0 110 x 1
0 00 1 x x

19/27



Minimal representatives of the inner orbits

Example, i =5

Rule 2
Suppose column i — 1 is linearly dependent from the columns with
indices {0,...,7i —2}.

For each p € p("~1) take the maximal index of a nonzero entry
I'j,,-,l with j € p.

Map those entries to 1.

P4 = {{0,1},{2}}

_ 101011
rdd.— (o 110 x 1
0 001 x x

20 /27



Minimal representatives of the inner orbits

Example, i =5

P4 = {{0,1},{2}}

X X X X
x2/1 0 1 0 1 1
rd.— 2o 1 1 0 x 1
x\0 0 0 1 x x

20 /27



Minimal representatives of the inner orbits

Example, i =5

P = {{0,1},{2}}

X X X X
x2/1 0 1 0 1 1
r@id.— 20 1 1 0 x 1
x\0 0 0 1 x x
1 01 0 x2 x?
rid.— (o 11 0 1 x2
0001 1 1

20 /27



Minimal representatives of the inner orbits

Example, i =5

is not a 5-semicanonical representative!

Application of the field automorphism

There is one more free parameter o € Aut(IFq) of the inner group!
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Minimal representatives of the inner orbits

Example, i =5

. 1010 x* x?
r@d.=1o 110 1 x?
0001 1 1

is not a 5-semicanonical representative!

Application of the field automorphism

There is one more free parameter a € Aut(IFq) of the inner group!

Apply the Frobenius automorphism on each entry.

_ 1010
réd.=1o 11 0
0001

— =X
=X X

20 /27



Minimal representatives of the inner orbits

Minimization by Field automorphisms

Go from the bottom-up through the column:

Minimize the entries I'; ;_1 by the application of the remaining field
automorphisms.

Restrict in each step the remaining automorphisms to those which
additionally fix I'; ;1.

21/27



Partition & Refinement

Pruning Ill — Partition and Refinement

The search tree is still to huge to get results for larger parameters.

Remember the example with (4096)! possible permutations.

Partition and Refinement

This is a well-known approach also used for example in the
program nauty (McKay) to calculate a canonical labeling of a
graph based on invariants.




Partition & Refinement

Example: Using the Weight Enumerator

Suppose I is equal to
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Partition & Refinement

Example: Using the Weight Enumerator

Suppose I is equal to

1101
0111

Calculate the weight enumerator of the punctured codes

G,j=0,...,3

0] 14+x+x2+x3
1]1+3x2
2 | 14 x+x24+x3
3 1+3x2
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Partition & Refinement

Example: Using the Weight Enumerator

Suppose I is equal to

1 101
0111

Calculate the weight enumerator of the punctured codes

G,j=0,....,3
0|14+ x+x2+x3
1|1+ 3x2
2 |14+ x+x2+x3
3|1+43x2

23 /27



Partition & Refinement

Example: Using the Weight Enumerator




Conclusion

Generalization for finite chain rings

Currently Possible

If R is a finite commutative chain ring. We can show that the
inner minimization algorithm is still easy to handle.

A first version is already implemented.
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Conclusion

Generalization for finite chain rings

Currently Possible

If R is a finite commutative chain ring. We can show that the
inner minimization algorithm is still easy to handle.

A first version is already implemented.

Future Work

Show that the inner minimization algorithm is still easy for
non-commutative chain rings.

| \

N
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Conclusion

Conclusion

Test the program online

http://wuw.algorithm.uni-bayreuth.de/en/research/
Coding_Theory/CanonicalForm/index.html

Thank you very much for your attention.
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