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Goal : A canonization algorithm

Let G be a group, which acts on a set X.
For some arbitrary element x € X compute:

Canonical Form A unique representative CF¢(x) of the orbit Gx of
x, i.e. CFg(x) = CFg(gx) forall g € G

Transporter Element A group element TR (x) := g € G such that
gx = CFg(x).

Automorphism Group The stabilizer
Stabg(x) :={g € G | gx = x} of x.
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Chain Rings

The (finite, associative) ring R is a chain ring if the set of left
ideals forms a chain:

R> N> N2> ...> N™ = {0g}

The maximal ideal N := R is generated by 0 € R.
(N'= RO =0'R and R/N ~F,.)

Examples of chain rings

o finite fields [F
@ integers modulo some prime power Zr

e Galois rings GR(q", p")
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Linear Codes over R

Linear Code
A linear code C is a R-submodule of R".

Shape of a linear code

There exists a unique sequence of integer A = (Ao, ..., Ak_1) with
m > \; > A\jy1 > 1 such that

C~R/NY&...¢R/N -1,

@ shp(C) := X is called the shape of C.
@ rk(C) := k is called the rank of C.
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Generator matrix

A matrix I € R¥*" is called a generator matrix of a linear code C
with shp(C) = A = (Xo, ..., Ak1), if

@ rows of I' generate the module C

o Rl .~ R/N* foralli€{0,...,k—1}

Warning
Let I be a generator matrix of C.

@ For some arbitrary A € GL,(R), the matrix Al must not be a
generator matrix of C (but the rows do generate C).

@ But, there is a subgroup GL)(R) < GL4(R) such that
GLA(R)T is equal to the set of generator matrices of C.

o GL)(R) = GLk(R) <= A = (m, ..., m) (the codes are free)

6 /22
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We will not specify the distance d defined on R". But the group of
linear isometries defined by d should be equal to the monomial
group

R*" xS,

acting on a vector v € R" via

(90; 7T)(V07 S Vn—l) = (Vﬂ_l(O)Qoala 000 Vﬂ—l(nfl)go;—ll)

Theorem

If d(0,xr=1) = d(0,x) for all r € R*, x € R then the linear
isometry group is equal to the monomial group. Examples are:

@ Hamming distance

@ homogeneous distance
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Generator matrices

Convention

The shape and the rank of a linear code is invariant under the
action of the monomial group. Hence, we fix k and
A= (Xo,...,Ax_1) for the rest of the talk.

Set of all generator matrices
Define

| \

RV := (I € R | shp(r(I)) = A}

Identification

We can identify the linear code C with the orbit GLy(R)T.
There is a natural bijection

{C |shp(C) = A} = R"/ GL(R)
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Equivalent generator matrices

We call two generator matrices equivalent, if they generate linearly
isometric codes.

v

In terms of a group action

Two generator matrices ', [’ € R**" are equivalent, if and only if

(A, ;) € (GLA(R) x R*™) x S : (A, ;) =T
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Goal : A canonization algorithm

Let I be some arbitrary generator matrix of a linear code of shape
A. Compute:
Canonical Form A unique representative CF(I") of
((GLA(R) x R*") x S,) T
Transporter Element A group element
TR(IN) := (A, p; 1) € (GLA(R) x R*") % S, such that
(A, ; m)I = CF(T).
Automorphism Group The stabilizer Stab(gy, (r)xr*")xs, () of T

v
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A general solution: partition refinement

We use the ideas of partition refinements, similar to the
computation of a canonical labeling of a graph (McKay, ...).

There is a nice description of this idea for a group action of G on
X in

Kaski & Ostergard : Classification algorithms for codes and designs
definitions £(G) :={H | H < G},
C(G):={Hg|H< G,g € G}
refinement r: X x €(G) — €(G), (x, Hg) — H'hg C Hg with
r(gox, Hggy ') = r(x, Hg)gy * (G-Homomorphism)
partitioning p: X x €(G) — £L(G),(x, Hg) — H < H with
p(gox, Hggy ') = p(x, Hg) (G-invariant)
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Backtrack tree T(x, G) for input x € X:

H' := p(x, Hg)

{ho, h1, hp} right transversal G
of H' in H |

H'hog H'hg H'hyg
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Canonization

Backtrack tree T(x, G) for input x € X:

continue until C
Hg = {g} ‘
Hg
i
H/hog H/hlg thgg

|
AN
o |



Properties

Canonization

Isomorphic inputs define isomorphic search trees.

T(x,G)

r(z,G)

H'hg

{9}

g eCG
D ——

Hggy"

H'hggy!

/{990 ! }

r(,G)gy !

T(goz, G)
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(x) {g} Iea;nianT(x,G) =

= min g8y 'gox = CF(gox)
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Canonization

Canonical Form
Define the canonical form by

CF(x) = i
(X) {g} Iea?nirlpT(X,G) =

Transporter Element

The transporter element g by one of those leafs {g} leading to the
canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

Stabg(x) = {TR(x) g | {g} leaf in T(x, G) and gx = CF(x)}

15 /22
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@ Let fy : X — Y be an H-Homomorphism
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Canonization
Pruning

by known automorphisms

Use the subgroup A < Stabg(x) of known automorphisms to
define pruning mechanisms ~~ traverse the tree in a depth-first
search manner

by refinements
@ Let fy : X — Y be an H-Homomorphism
-} r(x, Hg) = StabH(CFH(fH(gx))) . TRH(fH(gX))
@ Hgi, Hgy two nodes in T(x, G) with

CFH(fH(g1x)) < CFH(fH(g2x))
= prune the subtree rooted in Hgx (Homomorphism

Principle)
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acting on R**" we will investigate the group action of S, on the
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Adaption

The algorithm for linear codes

An equivalent group action

Instead of

acting on R**" we will investigate the group action of S, on the
set of orbits R**"/G := {GI' | € RM"}.

@ We can efficiently compute canonical representatives for the
orbits GI.

@ Permutation groups are much simpler.

@ The algorithm is well-studied for the action of the symmetric
group. (efficient data types & prunings)

18 /22
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Refinements by words of given symmetrized weight (Leon)

Draw colored edges

depending on the maximal Ideal
containing ¢; = ul’;.
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Refinements by words of given symmetrized weight (Leon)

(vT)*

(uT)*

Distinguish nodes by the number of neigh-
bors of some fixed color connected by an
edge of fixed color.

w € R¥ : shp({w)) = (m)

w € R¥ : shp({w)) = (m)

w € RK :shp({w)) = (m — 1)
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Refinements by words of given symmetrized weight (Leon)

Continue process until stable
(relabellings might be neces-
sary).

(VT ()t
w € R¥ : shp({w)) = (m)

w € R¥ : shp({w)) = (m)

w € RK :shp({w)) = (m — 1)
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Refinements

Refinements by words of given symmetrized weight (Leon)

(vT)*

(uT)*

Interpret new coloring as refine-
ment.

w € R¥ : shp({w)) = (m)

w € R¥ : shp({w)) = (m)

w € RK :shp({w)) = (m — 1)

20 /22
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A second , refinement”

Preparation

For each occurring node Sy in T(GTI,S,) choose an injective
sequence F = F(S,,nl") C Fixs, ({0,...,n—1}).
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Refinements

A second , refinement”

Preparation

For each occurring node Sy in T(GTI,S,) choose an injective
sequence F = F(S,,nl") C Fixs, ({0,...,n—1}).

An invariant for pruning subtrees

At the node S, of T(GT,S,), compute

fsp (7Tr) = CFG ((F*Jrfl(,-)),-ep)

and use the result to potentially prune the subtree rooted in this
node. (There will be no refinement of p.)




Refinements

How can you use it!

Finite fields, Z4, Fa[x]/(x?)

An implementation in C++ and an online calculator is available at
http://codes.uni-bayreuth.de/CanonicalForm/index.html

o Finite Fields: Ticket 13771 (Reviewers wanted!)
@ Finite Chain Rings: hopefully soon available!

Network Codes & [F4-linear codes over -

An implementation in C++ exists. — Write me an email.



http://codes.uni-bayreuth.de/CanonicalForm/index.html
http://trac.sagemath.org/sage_trac/ticket/13771
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