
Introduction Canonization Adaption Refinements

On canonical forms of ring-linear codes

Thomas Feulner

University of Bayreuth

April 2013

1 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let G be a group, which acts on a set X .
For some arbitrary element x ∈ X compute:

Canonical Form A unique representative CFG (x) of the orbit Gx of
x , i.e. CFG (x) = CFG (gx) for all g ∈ G

Transporter Element A group element TRG (x) := g ∈ G such that
gx = CFG (x).

Automorphism Group The stabilizer
StabG (x) := {g ∈ G | gx = x} of x .

2 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let G be a group, which acts on a set X .
For some arbitrary element x ∈ X compute:

Canonical Form A unique representative CFG (x) of the orbit Gx of
x , i.e. CFG (x) = CFG (gx) for all g ∈ G

Transporter Element A group element TRG (x) := g ∈ G such that
gx = CFG (x).

Automorphism Group The stabilizer
StabG (x) := {g ∈ G | gx = x} of x .

2 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let G be a group, which acts on a set X .
For some arbitrary element x ∈ X compute:

Canonical Form A unique representative CFG (x) of the orbit Gx of
x , i.e. CFG (x) = CFG (gx) for all g ∈ G

Transporter Element A group element TRG (x) := g ∈ G such that
gx = CFG (x).

Automorphism Group The stabilizer
StabG (x) := {g ∈ G | gx = x} of x .

2 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let G be a group, which acts on a set X .
For some arbitrary element x ∈ X compute:

Canonical Form A unique representative CFG (x) of the orbit Gx of
x , i.e. CFG (x) = CFG (gx) for all g ∈ G

Transporter Element A group element TRG (x) := g ∈ G such that
gx = CFG (x).

Automorphism Group The stabilizer
StabG (x) := {g ∈ G | gx = x} of x .

2 / 22

Introduction Canonization Adaption Refinements

Section 1

Introduction

3 / 22

Introduction Canonization Adaption Refinements

Chain Rings

Chain Rings

The (finite, associative) ring R is a chain ring if the set of left
ideals forms a chain:

R B N B N2 B . . . B Nm = {0R}
The maximal ideal N := Rθ is generated by θ ∈ R.
(N i = Rθi = θiR and R/N ' Fq.)

Examples of chain rings

finite fields Fpr

integers modulo some prime power Zpr

Galois rings GR(qr , pr)

4 / 22

Introduction Canonization Adaption Refinements

Chain Rings

Chain Rings

The (finite, associative) ring R is a chain ring if the set of left
ideals forms a chain:

R B N B N2 B . . . B Nm = {0R}
The maximal ideal N := Rθ is generated by θ ∈ R.
(N i = Rθi = θiR and R/N ' Fq.)

Examples of chain rings

finite fields Fpr

integers modulo some prime power Zpr

Galois rings GR(qr , pr)

4 / 22

Introduction Canonization Adaption Refinements

Chain Rings

Chain Rings

The (finite, associative) ring R is a chain ring if the set of left
ideals forms a chain:

R B N B N2 B . . . B Nm = {0R}
The maximal ideal N := Rθ is generated by θ ∈ R.
(N i = Rθi = θiR and R/N ' Fq.)

Examples of chain rings

finite fields Fpr

integers modulo some prime power Zpr

Galois rings GR(qr , pr)

4 / 22

Introduction Canonization Adaption Refinements

Chain Rings

Chain Rings

The (finite, associative) ring R is a chain ring if the set of left
ideals forms a chain:

R B N B N2 B . . . B Nm = {0R}
The maximal ideal N := Rθ is generated by θ ∈ R.
(N i = Rθi = θiR and R/N ' Fq.)

Examples of chain rings

finite fields Fpr

integers modulo some prime power Zpr

Galois rings GR(qr , pr)

4 / 22

Introduction Canonization Adaption Refinements

Chain Rings

Chain Rings

The (finite, associative) ring R is a chain ring if the set of left
ideals forms a chain:

R B N B N2 B . . . B Nm = {0R}
The maximal ideal N := Rθ is generated by θ ∈ R.
(N i = Rθi = θiR and R/N ' Fq.)

Examples of chain rings

finite fields Fpr

integers modulo some prime power Zpr

Galois rings GR(qr , pr)

4 / 22

Introduction Canonization Adaption Refinements

Linear Codes over R

Linear Code

A linear code C is a R-submodule of Rn.

Shape of a linear code

There exists a unique sequence of integer λ = (λ0, . . . , λk−1) with
m ≥ λi ≥ λi+1 ≥ 1 such that

C ' R/Nλ0 ⊕ . . .⊕ R/Nλk−1 .

shp(C) := λ is called the shape of C .

rk(C) := k is called the rank of C .

5 / 22

Introduction Canonization Adaption Refinements

Linear Codes over R

Linear Code

A linear code C is a R-submodule of Rn.

Shape of a linear code

There exists a unique sequence of integer λ = (λ0, . . . , λk−1) with
m ≥ λi ≥ λi+1 ≥ 1 such that

C ' R/Nλ0 ⊕ . . .⊕ R/Nλk−1 .

shp(C) := λ is called the shape of C .

rk(C) := k is called the rank of C .

5 / 22

Introduction Canonization Adaption Refinements

Linear Codes over R

Linear Code

A linear code C is a R-submodule of Rn.

Shape of a linear code

There exists a unique sequence of integer λ = (λ0, . . . , λk−1) with
m ≥ λi ≥ λi+1 ≥ 1 such that

C ' R/Nλ0 ⊕ . . .⊕ R/Nλk−1 .

shp(C) := λ is called the shape of C .

rk(C) := k is called the rank of C .

5 / 22

Introduction Canonization Adaption Refinements

Linear Codes over R

Linear Code

A linear code C is a R-submodule of Rn.

Shape of a linear code

There exists a unique sequence of integer λ = (λ0, . . . , λk−1) with
m ≥ λi ≥ λi+1 ≥ 1 such that

C ' R/Nλ0 ⊕ . . .⊕ R/Nλk−1 .

shp(C) := λ is called the shape of C .

rk(C) := k is called the rank of C .

5 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Generator matrix

A matrix Γ ∈ Rk×n is called a generator matrix of a linear code C
with shp(C) = λ = (λ0, . . . , λk−1), if

rows of Γ generate the module C

RΓi ,∗ ' R/Nλi for all i ∈ {0, . . . , k − 1}

Warning

Let Γ be a generator matrix of C .

For some arbitrary A ∈ GLk(R), the matrix AΓ must not be a
generator matrix of C (but the rows do generate C).

But, there is a subgroup GLλ(R) ≤ GLk(R) such that
GLλ(R)Γ is equal to the set of generator matrices of C .

GLλ(R) = GLk(R)⇐⇒ λ = (m, . . . ,m) (the codes are free)

6 / 22

Introduction Canonization Adaption Refinements

Isometries

Isometry

We will not specify the distance d defined on Rn. But the group of
linear isometries defined by d should be equal to the monomial
group

R∗n o Sn

acting on a vector v ∈ Rn via

(ϕ;π)(v0, . . . , vn−1) := (vπ−1(0)ϕ
−1
0 , . . . , vπ−1(n−1)ϕ

−1
n−1)

Theorem

If d(0, xr−1) = d(0, x) for all r ∈ R∗, x ∈ R then the linear
isometry group is equal to the monomial group. Examples are:

Hamming distance

homogeneous distance

7 / 22

Introduction Canonization Adaption Refinements

Isometries

Isometry

We will not specify the distance d defined on Rn. But the group of
linear isometries defined by d should be equal to the monomial
group

R∗n o Sn

acting on a vector v ∈ Rn via

(ϕ;π)(v0, . . . , vn−1) := (vπ−1(0)ϕ
−1
0 , . . . , vπ−1(n−1)ϕ

−1
n−1)

Theorem

If d(0, xr−1) = d(0, x) for all r ∈ R∗, x ∈ R then the linear
isometry group is equal to the monomial group. Examples are:

Hamming distance

homogeneous distance

7 / 22

Introduction Canonization Adaption Refinements

Isometries

Isometry

We will not specify the distance d defined on Rn. But the group of
linear isometries defined by d should be equal to the monomial
group

R∗n o Sn

acting on a vector v ∈ Rn via

(ϕ;π)(v0, . . . , vn−1) := (vπ−1(0)ϕ
−1
0 , . . . , vπ−1(n−1)ϕ

−1
n−1)

Theorem

If d(0, xr−1) = d(0, x) for all r ∈ R∗, x ∈ R then the linear
isometry group is equal to the monomial group. Examples are:

Hamming distance

homogeneous distance

7 / 22

Introduction Canonization Adaption Refinements

Isometries

Isometry

We will not specify the distance d defined on Rn. But the group of
linear isometries defined by d should be equal to the monomial
group

R∗n o Sn

acting on a vector v ∈ Rn via

(ϕ;π)(v0, . . . , vn−1) := (vπ−1(0)ϕ
−1
0 , . . . , vπ−1(n−1)ϕ

−1
n−1)

Theorem

If d(0, xr−1) = d(0, x) for all r ∈ R∗, x ∈ R then the linear
isometry group is equal to the monomial group. Examples are:

Hamming distance

homogeneous distance

7 / 22

Introduction Canonization Adaption Refinements

Isometries

Isometry

We will not specify the distance d defined on Rn. But the group of
linear isometries defined by d should be equal to the monomial
group

R∗n o Sn

acting on a vector v ∈ Rn via

(ϕ;π)(v0, . . . , vn−1) := (vπ−1(0)ϕ
−1
0 , . . . , vπ−1(n−1)ϕ

−1
n−1)

Theorem

If d(0, xr−1) = d(0, x) for all r ∈ R∗, x ∈ R then the linear
isometry group is equal to the monomial group. Examples are:

Hamming distance

homogeneous distance

7 / 22

Introduction Canonization Adaption Refinements

Isometries

Isometry

We will not specify the distance d defined on Rn. But the group of
linear isometries defined by d should be equal to the monomial
group

R∗n o Sn

acting on a vector v ∈ Rn via

(ϕ;π)(v0, . . . , vn−1) := (vπ−1(0)ϕ
−1
0 , . . . , vπ−1(n−1)ϕ

−1
n−1)

Theorem

If d(0, xr−1) = d(0, x) for all r ∈ R∗, x ∈ R then the linear
isometry group is equal to the monomial group. Examples are:

Hamming distance

homogeneous distance

7 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Convention

The shape and the rank of a linear code is invariant under the
action of the monomial group. Hence, we fix k and
λ = (λ0, . . . , λk−1) for the rest of the talk.

Set of all generator matrices

Define
Rλ×n := {Γ ∈ Rk×n | shp(R〈Γ〉) = λ}

Identification

We can identify the linear code C with the orbit GLλ(R)Γ.
There is a natural bijection

{C | shp(C) = λ} → Rλ×n/GLλ(R)

8 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Convention

The shape and the rank of a linear code is invariant under the
action of the monomial group. Hence, we fix k and
λ = (λ0, . . . , λk−1) for the rest of the talk.

Set of all generator matrices

Define
Rλ×n := {Γ ∈ Rk×n | shp(R〈Γ〉) = λ}

Identification

We can identify the linear code C with the orbit GLλ(R)Γ.
There is a natural bijection

{C | shp(C) = λ} → Rλ×n/GLλ(R)

8 / 22

Introduction Canonization Adaption Refinements

Generator matrices

Convention

The shape and the rank of a linear code is invariant under the
action of the monomial group. Hence, we fix k and
λ = (λ0, . . . , λk−1) for the rest of the talk.

Set of all generator matrices

Define
Rλ×n := {Γ ∈ Rk×n | shp(R〈Γ〉) = λ}

Identification

We can identify the linear code C with the orbit GLλ(R)Γ.
There is a natural bijection

{C | shp(C) = λ} → Rλ×n/GLλ(R)

8 / 22

Introduction Canonization Adaption Refinements

A group action

Equivalent generator matrices

We call two generator matrices equivalent, if they generate linearly
isometric codes.

In terms of a group action

Two generator matrices Γ, Γ′ ∈ Rλ×n are equivalent, if and only if

∃(A, ϕ;π) ∈ (GLλ(R)× R∗n) o Sn : (A, ϕ;π)Γ = Γ′

9 / 22

Introduction Canonization Adaption Refinements

A group action

Equivalent generator matrices

We call two generator matrices equivalent, if they generate linearly
isometric codes.

In terms of a group action

Two generator matrices Γ, Γ′ ∈ Rλ×n are equivalent, if and only if

∃(A, ϕ;π) ∈ (GLλ(R)× R∗n) o Sn : (A, ϕ;π)Γ = Γ′

9 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape
λ. Compute:

Canonical Form A unique representative CF(Γ) of
((GLλ(R)× R∗n) o Sn) Γ

Transporter Element A group element
TR(Γ) := (A, ϕ;π) ∈ (GLλ(R)× R∗n) o Sn such that
(A, ϕ;π)Γ = CF(Γ).

Automorphism Group The stabilizer Stab(GLλ(R)×R∗n)oSn(Γ) of Γ.

10 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape
λ. Compute:

Canonical Form A unique representative CF(Γ) of
((GLλ(R)× R∗n) o Sn) Γ

Transporter Element A group element
TR(Γ) := (A, ϕ;π) ∈ (GLλ(R)× R∗n) o Sn such that
(A, ϕ;π)Γ = CF(Γ).

Automorphism Group The stabilizer Stab(GLλ(R)×R∗n)oSn(Γ) of Γ.

10 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape
λ. Compute:

Canonical Form A unique representative CF(Γ) of
((GLλ(R)× R∗n) o Sn) Γ

Transporter Element A group element
TR(Γ) := (A, ϕ;π) ∈ (GLλ(R)× R∗n) o Sn such that
(A, ϕ;π)Γ = CF(Γ).

Automorphism Group The stabilizer Stab(GLλ(R)×R∗n)oSn(Γ) of Γ.

10 / 22

Introduction Canonization Adaption Refinements

Problem definition

Goal : A canonization algorithm

Let Γ be some arbitrary generator matrix of a linear code of shape
λ. Compute:

Canonical Form A unique representative CF(Γ) of
((GLλ(R)× R∗n) o Sn) Γ

Transporter Element A group element
TR(Γ) := (A, ϕ;π) ∈ (GLλ(R)× R∗n) o Sn such that
(A, ϕ;π)Γ = CF(Γ).

Automorphism Group The stabilizer Stab(GLλ(R)×R∗n)oSn(Γ) of Γ.

10 / 22

Introduction Canonization Adaption Refinements

Section 2

General Canonization Algorithms

11 / 22

Introduction Canonization Adaption Refinements

A general solution: partition refinement

We use the ideas of partition refinements, similar to the
computation of a canonical labeling of a graph (McKay, . . .).
There is a nice description of this idea for a group action of G on
X in

Kaski & Österg̊ard : Classification algorithms for codes and designs

definitions L(G) := {H | H ≤ G},
C(G) := {Hg | H ≤ G , g ∈ G}

refinement r : X × C(G)→ C(G), (x ,Hg) 7→ H ′hg ⊆ Hg with
r(g0x ,Hgg−1

0) = r(x ,Hg)g−1
0 (G -Homomorphism)

partitioning p : X × C(G)→ L(G), (x ,Hg) 7→ H ′ ≤ H with
p(g0x ,Hgg−1

0) = p(x ,Hg) (G -invariant)

12 / 22

Introduction Canonization Adaption Refinements

A general solution: partition refinement

We use the ideas of partition refinements, similar to the
computation of a canonical labeling of a graph (McKay, . . .).
There is a nice description of this idea for a group action of G on
X in

Kaski & Österg̊ard : Classification algorithms for codes and designs

definitions L(G) := {H | H ≤ G},
C(G) := {Hg | H ≤ G , g ∈ G}

refinement r : X × C(G)→ C(G), (x ,Hg) 7→ H ′hg ⊆ Hg with
r(g0x ,Hgg−1

0) = r(x ,Hg)g−1
0 (G -Homomorphism)

partitioning p : X × C(G)→ L(G), (x ,Hg) 7→ H ′ ≤ H with
p(g0x ,Hgg−1

0) = p(x ,Hg) (G -invariant)

12 / 22

Introduction Canonization Adaption Refinements

A general solution: partition refinement

We use the ideas of partition refinements, similar to the
computation of a canonical labeling of a graph (McKay, . . .).
There is a nice description of this idea for a group action of G on
X in

Kaski & Österg̊ard : Classification algorithms for codes and designs

definitions L(G) := {H | H ≤ G},
C(G) := {Hg | H ≤ G , g ∈ G}

refinement r : X × C(G)→ C(G), (x ,Hg) 7→ H ′hg ⊆ Hg with
r(g0x ,Hgg−1

0) = r(x ,Hg)g−1
0 (G -Homomorphism)

partitioning p : X × C(G)→ L(G), (x ,Hg) 7→ H ′ ≤ H with
p(g0x ,Hgg−1

0) = p(x ,Hg) (G -invariant)

12 / 22

Introduction Canonization Adaption Refinements

A general solution: partition refinement

We use the ideas of partition refinements, similar to the
computation of a canonical labeling of a graph (McKay, . . .).
There is a nice description of this idea for a group action of G on
X in

Kaski & Österg̊ard : Classification algorithms for codes and designs

definitions L(G) := {H | H ≤ G},
C(G) := {Hg | H ≤ G , g ∈ G}

refinement r : X × C(G)→ C(G), (x ,Hg) 7→ H ′hg ⊆ Hg with
r(g0x ,Hgg−1

0) = r(x ,Hg)g−1
0 (G -Homomorphism)

partitioning p : X × C(G)→ L(G), (x ,Hg) 7→ H ′ ≤ H with
p(g0x ,Hgg−1

0) = p(x ,Hg) (G -invariant)

12 / 22

Introduction Canonization Adaption Refinements

Backtrack tree T (x ,G) for input x ∈ X :

G

r(x ,G) =: Hg

H ′h0g H ′h1g H ′h2g

H ′ := p(x ,Hg)

{h0, h1, h2} right transversal
of H ′ in H

refine
continue until
Hg = {g}

13 / 22

Introduction Canonization Adaption Refinements

Backtrack tree T (x ,G) for input x ∈ X :

G

Hg

H ′h0g H ′h1g H ′h2g

H ′ := p(x ,Hg)

{h0, h1, h2} right transversal
of H ′ in H

refine
continue until
Hg = {g}

13 / 22

Introduction Canonization Adaption Refinements

Backtrack tree T (x ,G) for input x ∈ X :

G

Hg

H ′h0g

r(x ,H ′h0g)

H ′h1g

r(x ,H ′h1g)

H ′h2g

r(x ,H ′h2g)

H ′ := p(x ,Hg)

{h0, h1, h2} right transversal
of H ′ in H

refine
continue until
Hg = {g}

13 / 22

Introduction Canonization Adaption Refinements

Backtrack tree T (x ,G) for input x ∈ X :

G

Hg

H ′h0g

{g0} {g1}

H ′h1g H ′h2g

H ′ := p(x ,Hg)

{h0, h1, h2} right transversal
of H ′ in H

refine
continue until
Hg = {g}

13 / 22

Introduction Canonization Adaption Refinements

Properties

Theorem

Isomorphic inputs define isomorphic search trees.

G

r(x,G)

Hg

H ′hg

{ḡ}

G

r(x,G)g−1
0

Hgg−1
0

H ′hgg−1
0

{ḡg−1
0 }

g0 ∈ G

T (x,G) T (g0x,G)

14 / 22

Introduction Canonization Adaption Refinements

Canonical Form

Define the canonical form by

CF(x) = min
{g} leaf in T (x ,G)

gx

Transporter Element

The transporter element g by one of those leafs {g} leading to the
canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

StabG (x) = {TR(x)−1g | {g} leaf in T (x ,G) and gx = CF(x)}

15 / 22

Introduction Canonization Adaption Refinements

Canonical Form

Define the canonical form by

CF(x) = min
{g} leaf in T (x ,G)

gx

= min
{gg−1

0 } leaf in T (g0x ,G)
gg−1

0 g0x = CF(g0x)

Transporter Element

The transporter element g by one of those leafs {g} leading to the
canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

StabG (x) = {TR(x)−1g | {g} leaf in T (x ,G) and gx = CF(x)}
15 / 22

Introduction Canonization Adaption Refinements

Canonical Form

Define the canonical form by

CF(x) = min
{g} leaf in T (x ,G)

gx

Transporter Element

The transporter element g by one of those leafs {g} leading to the
canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

StabG (x) = {TR(x)−1g | {g} leaf in T (x ,G) and gx = CF(x)}

15 / 22

Introduction Canonization Adaption Refinements

Canonical Form

Define the canonical form by

CF(x) = min
{g} leaf in T (x ,G)

gx

Transporter Element

The transporter element g by one of those leafs {g} leading to the
canonical form gx = CF(x).

Automorphism Group

The automorphism group is given by

StabG (x) = {TR(x)−1g | {g} leaf in T (x ,G) and gx = CF(x)}

15 / 22

Introduction Canonization Adaption Refinements

Pruning

by known automorphisms

Use the subgroup A ≤ StabG (x) of known automorphisms to
define pruning mechanisms traverse the tree in a depth-first
search manner

by refinements

Let fH : X → Y be an H-Homomorphism

r(x ,Hg) := StabH(CFH(fH(gx))) · TRH(fH(gx))

Hg1, Hg2 two nodes in T (x ,G) with
CFH(fH(g1x)) < CFH(fH(g2x))
=⇒ prune the subtree rooted in Hg2 (Homomorphism
Principle)

16 / 22

Introduction Canonization Adaption Refinements

Pruning

by known automorphisms

Use the subgroup A ≤ StabG (x) of known automorphisms to
define pruning mechanisms traverse the tree in a depth-first
search manner

by refinements

Let fH : X → Y be an H-Homomorphism

r(x ,Hg) := StabH(CFH(fH(gx))) · TRH(fH(gx))

Hg1, Hg2 two nodes in T (x ,G) with
CFH(fH(g1x)) < CFH(fH(g2x))
=⇒ prune the subtree rooted in Hg2 (Homomorphism
Principle)

16 / 22

Introduction Canonization Adaption Refinements

Pruning

by known automorphisms

Use the subgroup A ≤ StabG (x) of known automorphisms to
define pruning mechanisms traverse the tree in a depth-first
search manner

by refinements

Let fH : X → Y be an H-Homomorphism

r(x ,Hg) := StabH(CFH(fH(gx))) · TRH(fH(gx))

Hg1, Hg2 two nodes in T (x ,G) with
CFH(fH(g1x)) < CFH(fH(g2x))
=⇒ prune the subtree rooted in Hg2 (Homomorphism
Principle)

16 / 22

Introduction Canonization Adaption Refinements

Section 3

Canonization of linear codes

17 / 22

Introduction Canonization Adaption Refinements

The algorithm for linear codes

An equivalent group action

Instead of
(GLλ(R)× R∗n)︸ ︷︷ ︸

=:G

oSn

acting on Rλ×n we will investigate the group action of Sn on the
set of orbits Rλ×n/G := {G Γ | Γ ∈ Rλ×n}.

Motivation

We can efficiently compute canonical representatives for the
orbits G Γ.

Permutation groups are much simpler.

The algorithm is well-studied for the action of the symmetric
group. (efficient data types & prunings)

18 / 22

Introduction Canonization Adaption Refinements

The algorithm for linear codes

An equivalent group action

Instead of
(GLλ(R)× R∗n)︸ ︷︷ ︸

=:G

oSn

acting on Rλ×n we will investigate the group action of Sn on the
set of orbits Rλ×n/G := {G Γ | Γ ∈ Rλ×n}.

Motivation

We can efficiently compute canonical representatives for the
orbits G Γ.

Permutation groups are much simpler.

The algorithm is well-studied for the action of the symmetric
group. (efficient data types & prunings)

18 / 22

Introduction Canonization Adaption Refinements

The algorithm for linear codes

An equivalent group action

Instead of
(GLλ(R)× R∗n)︸ ︷︷ ︸

=:G

oSn

acting on Rλ×n we will investigate the group action of Sn on the
set of orbits Rλ×n/G := {G Γ | Γ ∈ Rλ×n}.

Motivation

We can efficiently compute canonical representatives for the
orbits G Γ.

Permutation groups are much simpler.

The algorithm is well-studied for the action of the symmetric
group. (efficient data types & prunings)

18 / 22

Introduction Canonization Adaption Refinements

The algorithm for linear codes

An equivalent group action

Instead of
(GLλ(R)× R∗n)︸ ︷︷ ︸

=:G

oSn

acting on Rλ×n we will investigate the group action of Sn on the
set of orbits Rλ×n/G := {G Γ | Γ ∈ Rλ×n}.

Motivation

We can efficiently compute canonical representatives for the
orbits G Γ.

Permutation groups are much simpler.

The algorithm is well-studied for the action of the symmetric
group. (efficient data types & prunings)

18 / 22

Introduction Canonization Adaption Refinements

Section 4

A selection of important refinements

19 / 22

Introduction Canonization Adaption Refinements

Refinements by words of given symmetrized weight (Leon)

Draw colored edges

depending on the maximal Ideal
containing ci = uΓi .

Distinguish nodes by the number of neigh-
bors of some fixed color connected by an
edge of fixed color.

Continue process until stable
(relabellings might be neces-
sary).
Interpret new coloring as refine-
ment.

〈Γ∗,0〉 〈Γ∗,1〉 〈Γ∗,2〉 〈Γ∗,3〉
w ∈ Rk : shp(〈w〉) = (m)

w ∈ Rk : shp(〈w〉) = (m − 1)

w ∈ Rk : shp(〈w〉) = (m)

〈uT 〉⊥〈vT 〉⊥
.

〈Γ∗,4〉 〈Γ∗,5〉

20 / 22

Introduction Canonization Adaption Refinements

Refinements by words of given symmetrized weight (Leon)

Draw colored edges

depending on the maximal Ideal
containing ci = uΓi .

Distinguish nodes by the number of neigh-
bors of some fixed color connected by an
edge of fixed color.

Continue process until stable
(relabellings might be neces-
sary).
Interpret new coloring as refine-
ment.

〈Γ∗,0〉 〈Γ∗,1〉 〈Γ∗,2〉 〈Γ∗,3〉
w ∈ Rk : shp(〈w〉) = (m)

w ∈ Rk : shp(〈w〉) = (m − 1)

w ∈ Rk : shp(〈w〉) = (m)

〈uT 〉⊥〈vT 〉⊥
.

〈Γ∗,4〉 〈Γ∗,5〉

20 / 22

Introduction Canonization Adaption Refinements

Refinements by words of given symmetrized weight (Leon)

Draw colored edges

depending on the maximal Ideal
containing ci = uΓi .

Distinguish nodes by the number of neigh-
bors of some fixed color connected by an
edge of fixed color.

Continue process until stable
(relabellings might be neces-
sary).
Interpret new coloring as refine-
ment.

〈Γ∗,0〉 〈Γ∗,1〉 〈Γ∗,2〉 〈Γ∗,3〉
w ∈ Rk : shp(〈w〉) = (m)

w ∈ Rk : shp(〈w〉) = (m − 1)

w ∈ Rk : shp(〈w〉) = (m)

〈uT 〉⊥〈vT 〉⊥
.

〈Γ∗,4〉 〈Γ∗,5〉

20 / 22

Introduction Canonization Adaption Refinements

Refinements by words of given symmetrized weight (Leon)

Draw colored edges

depending on the maximal Ideal
containing ci = uΓi .

Distinguish nodes by the number of neigh-
bors of some fixed color connected by an
edge of fixed color.

Continue process until stable
(relabellings might be neces-
sary).
Interpret new coloring as refine-
ment.

〈Γ∗,0〉 〈Γ∗,3〉 〈Γ∗,2〉 〈Γ∗,1〉
w ∈ Rk : shp(〈w〉) = (m)

w ∈ Rk : shp(〈w〉) = (m − 1)

w ∈ Rk : shp(〈w〉) = (m)

〈uT 〉⊥〈vT 〉⊥
.

〈Γ∗,4〉 〈Γ∗,5〉

20 / 22

Introduction Canonization Adaption Refinements

Refinements by words of given symmetrized weight (Leon)

Draw colored edges

depending on the maximal Ideal
containing ci = uΓi .

Distinguish nodes by the number of neigh-
bors of some fixed color connected by an
edge of fixed color.

Continue process until stable
(relabellings might be neces-
sary).
Interpret new coloring as refine-
ment.

〈Γ∗,0〉 〈Γ∗,3〉 〈Γ∗,2〉 〈Γ∗,1〉
w ∈ Rk : shp(〈w〉) = (m)

w ∈ Rk : shp(〈w〉) = (m − 1)

w ∈ Rk : shp(〈w〉) = (m)

〈uT 〉⊥〈vT 〉⊥
.

〈Γ∗,4〉 〈Γ∗,5〉

20 / 22

Introduction Canonization Adaption Refinements

A second
”
refinement“

Preparation

For each occurring node Spπ in T (G Γ,Sn) choose an injective
sequence F = F (Sp, πΓ) ⊆ FixSp({0, . . . , n − 1}).

An invariant for pruning subtrees

At the node Spπ of T (G Γ,Sn), compute

fSp(πΓ) := CFG

(
(Γ∗,π−1(i))i∈F

)
and use the result to potentially prune the subtree rooted in this
node. (There will be no refinement of p.)

21 / 22

Introduction Canonization Adaption Refinements

A second
”
refinement“

Preparation

For each occurring node Spπ in T (G Γ,Sn) choose an injective
sequence F = F (Sp, πΓ) ⊆ FixSp({0, . . . , n − 1}).

An invariant for pruning subtrees

At the node Spπ of T (G Γ,Sn), compute

fSp(πΓ) := CFG

(
(Γ∗,π−1(i))i∈F

)
and use the result to potentially prune the subtree rooted in this
node. (There will be no refinement of p.)

21 / 22

Introduction Canonization Adaption Refinements

How can you use it!

Finite fields, Z4, F2[x]/(x2)

An implementation in C++ and an online calculator is available at
http://codes.uni-bayreuth.de/CanonicalForm/index.html

Sage

Finite Fields: Ticket 13771 (Reviewers wanted!)

Finite Chain Rings: hopefully soon available!

Network Codes & Fq-linear codes over Fqr

An implementation in C++ exists. → Write me an email.

22 / 22

http://codes.uni-bayreuth.de/CanonicalForm/index.html
http://trac.sagemath.org/sage_trac/ticket/13771

	Introduction
	General Canonization Algorithms
	Canonization of linear codes
	A selection of important refinements

