List of input files for different solvers
Kramer Mesner matrices from coding theory:
id | number of orbits, q, k, n, d, group | solvediophant | solver | CPLEX | ||
1 | 35 orbits, q=2 k=12 n=234 d=112 group=19105 link | 0.1s input details | ||||
2 | 85 orbits, q=2 k=12 n=159 d=72 group=23286 link | 0.1s input details | ||||
3 | 147 orbits, q=2 k=12 n=45 d=16 group=17909 link | 0.1s input details | ||||
4 | 199 orbits, q=2 k=12 n=25 d=8 group=18737 link | 37s input details random solution found | 0.1s input details | 0.1s input details | ||
5 | 85 orbits q=2 k=12 n=204 d=94 group=23286 link | 7min 30s input details | 0.1s input details | 0.1s input details | ||
6 | 145 orbits, q=2, k=12, n=144, d=64, group=17848 link | 8min 28s input details | 0.7s input details (0.2s smart cuts) | |||
7 | 85 orbits q=2 k=12 n=255 d=120 group=23286 link | 17min 55s input details | 0.2s input details | 0.1s input details | ||
8 | 143 orbits q=2 k=11 n=157 d=70 group=39811 link | >550h | 7s input details | 2.1s input details (1.0s smart cuts) | ||
9 | 143 orbits q=2 k=11 n=166 d=76 group=39811 link | 2m 3s input details | 20s input details | |||
10 | 205 orbits q=2 k=11 n=105 d=45 group=39594 link | 14m input details | 0.3s input details |
Kramer Mesner matrices from q-analogues of Steiner Systems
we are looking for a set of b k-dim subspaces of GF(q)v such that the intersection of two such subspaces is at most 1-dimensional
id | number of orbits, q, v, k, | solvediophant | solver | CPLEX | ||
1395 orbits q=2 v=6 k=3 b=50 group=identity link | 29s input details | |||||
1 | 189 orbits q=2 v=7 k=3 b=210 group=125421 link | 24s input details (search b=100) | 2.4s input details (opt=273) | |||
11811 3-spaces q=2 v=7 k=3 group=identity link | ||||||
3 | 567 orbits q=2 v=7 k=3 b=280 group=125461 link | 12m input details | 2.7h input details (opt=304) | |||
Matrices for Singer cycles
we try to find a set of k-dim subspaces of GF(q)v such that the intersection of two such subspaces is at most 1-dimensional by building the set as a union of b orbits of a Singer cycle
id | number of orbits, q, v, k, | solvediophant | solver | CPLEX | ||
320 orbits q=2 v=8 k=3 b=6, all orbits | not found input | |||||
949 orbits q=2 v=9 k=3 b=11, some random orbits | not found input | |||||
20000 orbits q=2 v=14 k=3 b=170, some random orbits | input (gz) | |||||