Canonization of linear Codes over \mathbb{Z}_4

Thomas Feulner

University of Bayreuth

April 15, 2010

Linear Code

A (linear) code C is a submodule of \mathbb{Z}_4^n .

Type of a Code

It has type (k_0, k_1) if $C \simeq \mathbb{Z}_4^{k_0} \times \mathbb{Z}_2^{k_1}$

Canonization of linear Codes

Linear Codes over \mathbb{Z}_4

Linear Code

A (linear) code C is a submodule of \mathbb{Z}_{4}^{n} .

Type of a Code

It has type (k_0, k_1) if $C \simeq \mathbb{Z}_4^{k_0} \times \mathbb{Z}_2^{k_1}$.

Basis of a Code

Let C be of type (k_0, k_1) , $k = k_0 + k_1$. A sequence of generators

$$(g_0,\ldots,g_{k_0-1},2g_{k_0},\ldots,2g_{k-1})$$

of C is called an ordered basis of C.

Set of ordered basis matrices of linear codes of type (k_0, k_1)

$$\mathbb{Z}_{\Delta}^{(k_0,k_1)\times n}\subseteq\mathbb{Z}_{\Delta}^{k\times}$$

Basis of a Code

Let C be of type (k_0, k_1) , $k = k_0 + k_1$. A sequence of generators

$$(g_0,\ldots,g_{k_0-1},2g_{k_0},\ldots,2g_{k-1})$$

of C is called an ordered basis of C.

Set of ordered basis matrices of linear codes of type (k_0, k_1)

$$\mathbb{Z}_{\Delta}^{(k_0,k_1)\times n}\subseteq \mathbb{Z}_{\Delta}^{k\times n}$$

A special subgroup

Let

$$\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4) \leq \mathsf{GL}_k(\mathbb{Z}_4)$$

denote the subgroup of all block matrices of type

$$\begin{pmatrix} A^{(0,0)} & A^{(0,1)} \\ 2A^{(1,0)} & A^{(1,1)} \end{pmatrix}$$

Set of ordered basis matrices of a given linear code

Let Γ be an ordered basis matrix of C. The orbit

$$(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4))$$
 [

forms the set of all ordered basis matrices of C

A special subgroup

Let

$$\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4) \leq \mathsf{GL}_k(\mathbb{Z}_4)$$

denote the subgroup of all block matrices of type

$$\begin{pmatrix} A^{(0,0)} & A^{(0,1)} \\ 2A^{(1,0)} & A^{(1,1)} \end{pmatrix}$$

Set of ordered basis matrices of a given linear code

Let Γ be an ordered basis matrix of C. The orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\right)\Gamma$$

forms the set of all ordered basis matrices of C.

Isometry

Two codes C, C' are equivalent if there is

- a vector of column multiplications $\varphi \in \mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

with
$$(\varphi; \pi)C = C'$$
.

Isometry in terms of ordered ba

Two ordered basis matrices Γ, Γ' are equivalent if there is

with $(A, \varphi; \pi)\Gamma = \Gamma'$.

Isometry

Two codes C, C' are equivalent if there is

- ullet a vector of column multiplications $arphi\in\mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

Two ordered basis matrices Γ , Γ' are equivalent if there is

with $(A, \varphi; \pi)\Gamma = \Gamma'$.

Canonization of linear Codes

Linear Codes over \mathbb{Z}_4

Isometry

Two codes C, C' are equivalent if there is

- a vector of column multiplications $\varphi \in \mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

with
$$(\varphi; \pi)C = C'$$
.

Isometry in terms of ordered basis matrices

Two ordered basis matrices Γ, Γ' are equivalent if there is

- a matrix $A \in GL_{(k_0,k_1)}(\mathbb{Z}_4)$,
- a vector of column multiplications $\varphi \in \mathbb{Z}_{a}^{*n}$ and
- a permutation $\pi \in S_n$

with $(A, \varphi; \pi)\Gamma = \Gamma'$.

Isometry

Two codes C, C' are equivalent if there is

- a vector of column multiplications $\varphi \in \mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

with
$$(\varphi; \pi)C = C'$$
.

Isometry in terms of ordered basis matrices

- a matrix $A \in GL_{(k_0,k_1)}(\mathbb{Z}_4)$,
- a vector of column multiplications $\varphi \in \mathbb{Z}_4^{*n}$ and
- a permutation $\pi \in S_n$.

with
$$(A, \varphi; \pi)\Gamma = \Gamma'$$
.

Isometry

Two codes C, C' are equivalent if there is

- ullet a vector of column multiplications $arphi\in\mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

with
$$(\varphi; \pi)C = C'$$
.

Isometry in terms of ordered basis matrices

- a matrix $A \in \mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)$,
- ullet a vector of column multiplications $\varphi \in \mathbb{Z}_4^{*n}$ and
- a permutation $\pi \in S_n$.

with
$$(A, \varphi; \pi)\Gamma = \Gamma'$$
.

Isometry

Two codes C, C' are equivalent if there is

- a vector of column multiplications $\varphi \in \mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

with
$$(\varphi; \pi)C = C'$$
.

Isometry in terms of ordered basis matrices

- a matrix $A \in GL_{(k_0,k_1)}(\mathbb{Z}_4)$,
- ullet a vector of column multiplications $arphi\in\mathbb{Z}_4^{*\,n}$ and
- a permutation $\pi \in S_n$.

with
$$(A, \varphi; \pi)\Gamma = \Gamma'$$
.

Isometry

Two codes C, C' are equivalent if there is

- ullet a vector of column multiplications $arphi\in\mathbb{Z}_4^{*n}$
- a permutation $\pi \in S_n$

with
$$(\varphi; \pi)C = C'$$
.

Isometry in terms of ordered basis matrices

- a matrix $A \in \mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)$,
- ullet a vector of column multiplications $\varphi\in \mathbb{Z}_{{\mathtt A}}^{*\,n}$ and
- a permutation $\pi \in S_n$.

with
$$(A, \varphi; \pi)\Gamma = \Gamma'$$
.

Let $\Gamma, \Gamma' \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be equivalent ordered basis matrices

Let $\Gamma, \Gamma' \in \mathbb{Z}_4^{(k_0, k_1) \times n}$ be equivalent ordered basis matrices

Let $\Gamma, \Gamma' \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be equivalent ordered basis matrices

Possible approach to define Γ^{\odot} :

Take the smallest ordered basis matrix

Let $\Gamma, \Gamma' \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be equivalent ordered basis matrices

Possible approach to define Γ^{\odot} :

Take the smallest ordered basis matrix

Our definition of "small" is done via the definition of a fast canonization algorithm.

The partition and refinement idea

There is a well-known, very fast canonization algorithm for graphs:

nauty (B. McKay)

based on

Partition & Refinement

The Refinement step

Calculate properties of the vertices, invariant under relabeling!

Calculate the degree of the vertices

Canonization of linear Codes

The Refinement step

Calculate properties of the vertices, invariant under relabeling!

Calculate the degree of the vertices

i	0	1	2	3
degree(i)	3	1	2	2

Canonization of linear Codes

Sort in descending order

The Refinement step

Calculate properties of the vertices, invariant under relabeling!

Sort in descending order $\begin{array}{c|cccc} i & 0 & 3 & 2 & 1 \\ \hline degree(i) & 3 & 2 & 2 & 1 \\ \end{array}$

Canonization of linear Codes

 Relabel the vertices

 i
 0
 1
 2
 3

 degree(i)
 3
 2
 2
 1

The Partition step

Do a backtracking procedure.

The Partition step

Do a backtracking procedure.

Choose a block of vertices which have the same color.

The Partition step

Do a backtracking procedure.

Choose a block of vertices which have the same color.

Investigate all possibilities to color one vertex in this block with a new color and to give it the smallest label.

Canonization of linear Codes

The Partition step

Do a backtracking procedure.

The comparison of the leaf nodes yields "=":

- (1,3) and (1,2)(1,3) map the graph to its canonical representative
- $(1,3)^{-1}(1,2)(1,3)$ is the only automorphism

	Graphs	linear Codes
Group Action	$S_n \setminus 2^{\binom{n}{2}}$	$\left(GL_{(k_0,k_1)}(\mathbb{Z}_4)\times(\mathbb{Z}_4^{*n}\rtimes S_n)\right)\backslash\!\!\backslash\!\!\mathbb{Z}_4^{(k_0,k_1)\times n}$

	Graphs	linear Codes
Group Action	$S_n \setminus 2^{\binom{n}{2}}$	$ \begin{array}{c} \left(GL_{(k_0,k_1)}(\mathbb{Z}_4)\times(\mathbb{Z}_4^{*n}\rtimes S_n)\right) \mathbb{Z}_4^{(k_0,k_1)\times n} \\ \\ replace \ by \\ S_n \mathbb{V} \left(\left(GL_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n}\right) \mathbb{V} \mathbb{Z}_4^{(k_0,k_1)\times n}\right) \end{array} $

Leon's algorithm for linear codes over finite fields

Interpret the group

$$(\mathbb{F}_q^*)^n \rtimes S_n$$

as subgroup of

$$S_{n(q-1)^n}$$

	Graphs	linear Codes
Group Action	$S_n \setminus 2^{\binom{n}{2}}$	$ \overline{ \left S_n \right \left(\left(GL_{(k_0,k_1)}(\mathbb{Z}_4) \times \mathbb{Z}_4^{*n} \right) \left \left \mathbb{Z}_4^{(k_0,k_1) \times n} \right \right) } \right } $

Canonization of linear Codes

	Graphs	linear Codes
Group Action	$S_n \setminus 2^{\binom{n}{2}}$	$S_n \setminus \left(\left(GL_{(k_0,k_1)}(\mathbb{Z}_4) \times \mathbb{Z}_4^{*n} \right) \setminus \mathbb{Z}_4^{(k_0,k_1) \times n} \right)$
Refine- ment	$f: 2^{\binom{n}{2}} \to X^n$ G - homomorphism for some appropriate $G \leq S_n$	

Homomorphism of group actions

Let G act on X, Y.

 $f: X \to Y$ is a G-homomorphism if

$$f(gx) = gf(x), \ \forall \ x \in X, g \in G$$

	Graphs	linear Codes
Group Action	$S_n \setminus 2^{\binom{n}{2}}$	$S_n \setminus \left(\left(GL_{(k_0,k_1)}(\mathbb{Z}_4) \times \mathbb{Z}_4^{*n} \right) \setminus \mathbb{Z}_4^{(k_0,k_1) \times n} \right)$
Refine- ment	$f: 2^{\binom{n}{2}} \to X^n$ G - homomorphism for some appropriate $G \le S_n$	$f: \left(GL_{(k_0,k_1)}(\mathbb{Z}_4) \times \mathbb{Z}_4^{*n}\right) \backslash \!\! / \mathbb{Z}_4^{(k_0,k_1) \times n} \to X^n$ $G\text{-homomorphism for some appropriate}$ $G \leq S_n$

Homomorphism of group actions

Let G act on X, Y.

 $f: X \to Y$ is a G-homomorphism if

$$f(gx) = gf(x), \ \forall \ x \in X, g \in G$$

Let

- $\Gamma \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be an ordered basis matrix, which generates a linear code C
- $C_i \leq \mathbb{Z}_4^n$ denote the punctured code of C in $i \in \{0, \dots, n-1\}$
- swe(C) $\in \mathbb{Z}[X_0, X_1, X_2]$ be the symmetrized weight enumerator of C (or any other invariant for equivalent codes

Let

- $\Gamma \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be an ordered basis matrix, which generates a linear code C
- $C_i \leq \mathbb{Z}_4^n$ denote the punctured code of C in $i \in \{0, \dots, n-1\}$
- swe(C) $\in \mathbb{Z}[X_0, X_1, X_2]$ be the symmetrized weight enumerator of C (or any other invariant for equivalent codes)

Let

- $\Gamma \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be an ordered basis matrix, which generates a linear code C
- $C_i \leq \mathbb{Z}_4^n$ denote the punctured code of C in $i \in \{0, \dots, n-1\}$
- $swe(C) \in \mathbb{Z}[X_0, X_1, X_2]$ be the symmetrized weight enumerator of C (or any other invariant for equivalent codes)

Let

- $\Gamma \in \mathbb{Z}_4^{(k_0,k_1) \times n}$ be an ordered basis matrix, which generates a linear code C
- $C_i \leq \mathbb{Z}_4^n$ denote the punctured code of C in $i \in \{0, \dots, n-1\}$
- $swe(C) \in \mathbb{Z}[X_0, X_1, X_2]$ be the symmetrized weight enumerator of C (or any other invariant for equivalent codes)

The function

$$f: \left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4) \times \mathbb{Z}_4^{*n}\right) \setminus \!\!\! \setminus \mathbb{Z}_4^{(k_0,k_1) \times n} \to \left(\mathbb{Z}[X_0,X_1,X_2]\right)^n$$

$$\Gamma \mapsto \left(\mathsf{swe}(C_0), \dots, \mathsf{swe}(C_{n-1})\right)$$

is an S_n -homomorphism.

Example

Code C generated by
$$\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

swe(C_0) $\begin{vmatrix} X_0^4 + 2X_0^3X_2 + 4X_0^2X_1^2 + 4X_0^2X_1X_2 + X_0^2X_2^2 + 4X_0X_1X_2^2 \\ \text{swe}(C_1) \end{vmatrix}$ $\begin{vmatrix} X_0^4 + 2X_0^3X_1 + 2X_0^3X_2 + 4X_0^2X_1X_2 + X_0^2X_2^2 + 4X_0X_1^2X_2 + 2X_0X_1X_2^2 \\ \text{swe}(C_2) \end{vmatrix}$ $\begin{vmatrix} X_0^4 + 2X_0^3X_1 + 2X_0^3X_2 + 4X_0^2X_1X_2 + X_0^2X_2^2 + 4X_0X_1^2X_2 + 2X_0X_1X_2^2 \\ \text{swe}(C_3) \end{vmatrix}$ $\begin{vmatrix} X_0^4 + 6X_0^2X_1^2 + 3X_0^2X_2^2 + 6X_0X_1^2X_2 \end{vmatrix}$

Example

Code
$$C$$
 generated by $\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$

$$swe(C_0) \begin{vmatrix} X_0^4 + 2X_0^3X_2 + 4X_0^2X_1^2 + 4X_0^2X_1X_2 + X_0^2X_2^2 + 4X_0X_1X_2^2 \\ swe(C_1) \end{vmatrix} X_0^4 + 2X_0^3X_1 + 2X_0^3X_2 + 4X_0^2X_1X_2 + X_0^2X_2^2 + 4X_0X_1^2X_2 + 2X_0X_1X_2^2 \\ swe(C_2) \begin{vmatrix} X_0^4 + 2X_0^3X_1 + 2X_0^3X_2 + 4X_0^2X_1X_2 + X_0^2X_2^2 + 4X_0X_1^2X_2 + 2X_0X_1X_2^2 \\ swe(C_3) \end{vmatrix} X_0^4 + 6X_0^2X_1^2 + 3X_0^2X_2^2 + 6X_0X_1^2X_2 \\ swe(C_3) > swe(C_3) > swe(C_3) > swe(C_1) = swe(C_2)$$

Example

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*\,n}\right)\mathsf{\Gamma}$$

Problem

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*\,n}\right)\mathsf{\Gamma}$$

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n}\right)\Gamma$$

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n}\right)\Gamma$$

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n}\right)\Gamma$$

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Problem

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*\,n}\right)\mathsf{\Gamma}$$

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Problem

Remember that the nodes of this tree represents orbits:

$$\Gamma = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

is a synonym for the orbit

$$\left(\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*\,n}\right)\Gamma$$

Solution:

A fast canonization algorithm for the calculation of orbit representatives in $(GL_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n})\Gamma$

Modifications of the group action

A common stabilizer

The group $GL_{(k_0,k_1)}(\mathbb{Z}_4)$ does not act faithfully (for $k_1>0$). There is a common stabilizer

$$\mathcal{N} := I_k + \left\{ \begin{pmatrix} 0 & 2B \end{pmatrix} \middle| B \in \mathbb{Z}_4^{k \times k_1} \right\}$$

Replacement of the group

Instead of
$$GL_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n}$$
 use

$$\mathfrak{G} := (\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)/\mathfrak{N}) \times \mathbb{Z}_4^{*1}$$

Modifications of the group action

A common stabilizer

The group $GL_{(k_0,k_1)}(\mathbb{Z}_4)$ does not act faithfully (for $k_1>0$). There is a common stabilizer

$$\mathcal{N} := I_k + \left\{ \begin{pmatrix} 0 & 2B \end{pmatrix} \middle| B \in \mathbb{Z}_4^{k \times k_1} \right\}$$

Replacement of the group

Instead of $GL_{(k_0,k_1)}(\mathbb{Z}_4)\times\mathbb{Z}_4^{*n}$ use

$$\mathfrak{G} := (\mathsf{GL}_{(k_0,k_1)}(\mathbb{Z}_4)/\mathfrak{N}) \times \mathbb{Z}_4^{*n}$$

Modifications of the nodes of the backtrack tree

Let (b_0, \ldots, b_{n-1}) be the ordering of $\{0, \ldots, n-1\}$ in which the columns are fixed during the backtracking procedure.

i-semicanonical representatives

Represent the nodes $\pi\Gamma$ on level i by another orbit representative $\Gamma^{(i,\pi)}$ with:

$$\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)}) \leq \Pi_{(b_0,\dots,b_{i-1})}(\widetilde{\Gamma}), \forall \widetilde{\Gamma} \in \mathfrak{G}(\pi\Gamma)$$

Conclusion

We only need a procedure to calculate $\Gamma^{(i+1,\pi)}$ or equivalently we must determine the stabilizer of $\Gamma^{(i,\pi)}$.

Modifications of the nodes of the backtrack tree

Let (b_0, \ldots, b_{n-1}) be the ordering of $\{0, \ldots, n-1\}$ in which the columns are fixed during the backtracking procedure.

i-semicanonical representatives

Represent the nodes $\pi\Gamma$ on level i by another orbit representative $\Gamma^{(i,\pi)}$ with:

$$\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)}) \leq \Pi_{(b_0,\dots,b_{i-1})}(\widetilde{\Gamma}), \forall \widetilde{\Gamma} \in \mathfrak{G}(\pi\Gamma)$$

Conclusion:

We only need a procedure to calculate $\Gamma^{(i+1,\pi)}$ or equivalently we must determine the stabilizer of $\Gamma^{(i,\pi)}$.

Main Idea: Partition and Refinement

With the right choice of (b_0, \ldots, b_{i-1}) we can guarantee

$$\Pi_{(b_0,\ldots,b_{i-1})}(\Gamma^{(i,\pi)})=$$

- Pivot Elements in {1,2}
- $\gamma_i = 2$ implies a row that is a multiple of 2
- the entries above the pivot elements are reduced modulo γ_i
- $\gamma_i = 2 \iff i \geq k_0$

Main Idea: Partition and Refinement

With the right choice of (b_0, \ldots, b_{i-1}) we can guarantee

$$\Pi_{(b_0,...,b_{i-1})}(\Gamma^{(i,\pi)}) =$$

- Pivot Elements in {1,2}
- $\gamma_i = 2$ implies a row that is a multiple of 2
- the entries above the pivot elements are reduced modulo γ_i

•
$$\gamma_i = 2 \iff i \geq k_0$$

With the right choice of (b_0, \ldots, b_{i-1}) we can guarantee

$$\Pi_{(b_0,\ldots,b_{i-1})}(\Gamma^{(i,\pi)})=$$

- Pivot Elements in {1,2}
- $\gamma_i = 2$ implies a row that is a multiple of 2
- ullet the entries above the pivot elements are reduced modulo γ_i

•
$$\gamma_i = 2 \iff i \geq k_0$$

Main Idea: Partition and Refinement

With the right choice of (b_0, \ldots, b_{i-1}) we can guarantee

$$\Pi_{(b_0,...,b_{i-1})}(\Gamma^{(i,\pi)}) =$$

- Pivot Elements in {1,2}
- $\gamma_i = 2$ implies a row that is a multiple of 2
- the entries above the pivot elements are reduced modulo γ_i
- $\gamma_i = 2 \iff i > k_0$

The main observation

Let $(\overline{k}_0, \overline{k}_1)$ be the type of $\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)})$. With the right choice of (b_0,\dots,b_{i-1}) we can guarantee, that

$$\left(\mathcal{G}_{(k_0,k_1)\times i}\right)_{\Pi_{(b_0,\ldots,b_{i-1})}(\Gamma^{(i,\pi)})}$$

is generated by

The main observation

Let $(\overline{k}_0, \overline{k}_1)$ be the type of $\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)})$. With the right choice of (b_0,\dots,b_{i-1}) we can guarantee, that

$$\left(\mathfrak{G}_{(k_0,k_1)\times i}\right)_{\Pi_{(b_0,\ldots,b_{i-1})}(\Gamma^{(i,\pi)})}$$

is generated by

The main observation

But:

$$\left(\mathcal{G}_{(\overline{k}_0,\overline{k}_1)\times i}\right)_{\Pi_{(b_0,\ldots,b_{i-1})}(\Gamma^{(i,\pi)})}\leq \mathbb{Z}_2^{\overline{k}_0+\overline{k}_0\overline{k}_1}$$

is an elementary abelian 2-group:

$$\begin{pmatrix} D & A \\ 0 & I_{\overline{k}_1} \end{pmatrix} \begin{pmatrix} E & B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N} = \begin{pmatrix} DE & A+B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N}$$

• It has at most \overline{k} generators

The main observation

But:

0

$$\left(\mathcal{G}_{(\overline{k}_0,\overline{k}_1)\times i}\right)_{\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)})} \leq \mathbb{Z}_2^{\overline{k}_0+\overline{k}_0\overline{k}_1}$$

is an elementary abelian 2-group:

$$\begin{pmatrix} D & A \\ 0 & I_{\overline{k}_1} \end{pmatrix} \begin{pmatrix} E & B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N} = \begin{pmatrix} DE & A+B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N}$$

• It has at most \overline{k} generators

The main observation

But:

0

$$\left(\mathcal{G}_{(\overline{k}_0,\overline{k}_1)\times i}\right)_{\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)})} \leq \mathbb{Z}_2^{\overline{k}_0+\overline{k}_0\overline{k}_1}$$

is an elementary abelian 2-group:

$$\begin{pmatrix} D & A \\ 0 & I_{\overline{k}_1} \end{pmatrix} \begin{pmatrix} E & B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N} = \begin{pmatrix} DE & A+B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N}$$

• It has at most \overline{k} generators

The main observation

But:

•

$$\left(\mathcal{G}_{(\overline{k}_0,\overline{k}_1)\times i}\right)_{\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)})} \leq \mathbb{Z}_2^{\overline{k}_0+\overline{k}_0\overline{k}_1}$$

is an elementary abelian 2-group:

$$\begin{pmatrix} D & A \\ 0 & I_{\overline{k}_1} \end{pmatrix} \begin{pmatrix} E & B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N} = \begin{pmatrix} DE & A+B \\ 0 & I_{\overline{k}_1} \end{pmatrix} \mathcal{N}$$

• It has at most \overline{k} generators

Codes over finite fields and free \mathbb{Z}_4 -linear codes

$$\mathfrak{G} = GL_k(R) \times R^{*n}$$

 $\Pi_{(b_0,\dots,b_{i-1})}(\Gamma^{(i,\pi)})$ defines some unique partition (p_0,\dots,p_{l-1}) of $\{0,\dots,s-1\}$ such that

$$\left(\mathcal{G}_{(s,0)}\right)_{\Pi_{(b_0,\ldots,b_{i-1})}(\Gamma^{(i,\pi)})}$$

is generated by

$$\begin{pmatrix} \begin{pmatrix} d_0 & & \\ & \ddots & \\ & d_{s-1} \end{pmatrix}, \varphi \end{pmatrix}, \text{ with}$$

$$d_a = \mu \iff a \in p_j$$

$$\varphi_b = \mu^{-1} \iff \text{supp}^*(\Gamma_b) \subset p_j$$