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Linear Code

A (linear) code C is a submodule of Zj.

Type of a Code
It has type (ko, k1) if C = Zi® x Z.
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Basis of a Code

Let C be of type (ko, k1), k = ko + k1. A sequence of generators

(g07 -3 8ko—1, 2gko7 ey 2gk71)

of C is called an ordered basis of C.

A\

Set of ordered basis matrices of linear codes of type (ko, k1)

(ko,k1)xn kxn
Z, C Zy,
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A special subgroup

Let

GL (ko k) (Za) < GLi(Z4)

denote the subgroup of all block matrices of type

A(00)  A(0.1)
<2A(1’O) A(1,1)>
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Ordered basis matrix

A special subgroup

Let
GL (ko k) (Za) < GLi(Z4)

denote the subgroup of all block matrices of type
A(00)  A(0.1)
<2A(1’O) A(1,1)>

Set of ordered basis matrices of a given linear code
Let I be an ordered basis matrix of C. The orbit

(GL(koykl)(Z“)) r

forms the set of all ordered basis matrices of C.

A\
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Linear Codes over Zy4

Two codes C, C' are equivalent if there is
@ a vector of column multiplications ¢ € Z;"
@ a permutation m € S,

with (¢; m)C = C'.

Isometry in terms of ordered basis matrices

Two ordered basis matrices ', ['* are equivalent if there is
@ a matrix A € GL(k07k1)(Z4),
@ a vector of column multiplications ¢ € Z;" and

@ a permutation 7 € S,,.
with (A, ;) =T,
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Goal: Canonization

Let I, € ngo’kl)xn be equivalent ordered basis matrices

orbit of equivalent codes

/ unigjie canonical representative
r

Possible approach to define re.

Take the smallest ordered basis matrix

Our definition of “small” is done via the definition of a fast
canonization algorithm.

6
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Main Idea: Partition and Refinement

The partition and refinement idea

There is a well-known, very fast canonization algorithm for graphs:
nauty (B. McKay)
based on

Partition & Refinement
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Calculate properties of the vertices, invariant under relabeling!
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Main Idea: Partition and Refinement

The Refinement step

Calculate properties of the vertices, invariant under relabeling!

Calculate the degree of the vertices
il0 1 2 3

degree(i)

31 2 2

Sort in descending order

i|0]3 2]1
degree(i) [3 |2 2|1
Relabel the vertices

ijo]1 23
degree(i) [3]2 21
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Main Idea: Partition and Refinement

The Partition step

Do a backtracking proce-
dure.

Choose a block of vertices
id (1,2) which have the same color.

Investigate all possibilities to
color one vertex in this block
with a new color and to give it
2 2 the smallest label.




Main Idea: Partition and Refinement

The Partition step

Do a backtracking proce-
dure.

The comparison of the leaf
nodes yields “=":

e (1,3) and (1,2)(1,3) map
the graph to its canonical
representative

o (1,3)71(1,2)(1,3) is the
only automorphism



Canonization of linear Codes
Comparison: Graphs and linear Codes

\ Graphs \ linear Codes

Gro.up 5,,\\2('21) (GL(ko,kl)(Z4) X (Z3" Sn)) \\ngo7k1)xn
Action
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Canonization of linear Codes
Comparison: Graphs and linear Codes

‘ Graphs ‘ linear Codes
(GL(k07k1)(Z4) X (Zzn x Sn)) \\ngo,h)Xn

Group 1 5 4o(2)

Action replace by

Sn\ ((G'—(kovkl)(Zz;) x Z;") \\ngoykl)m)

Leon's algorithm for linear codes over finite fields

Interpret the group

as subgroup of

10/20



Canonization of linear Codes
Comparison: Graphs and linear Codes

‘ Graphs ‘ linear Codes

Grou n = —
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Canonization of linear Codes
Comparison: Graphs and linear Codes

‘ Graphs ‘ linear Codes
Group n TUNEL
Action 5:\\2(2) Sn\ ((GL(ko k) (Za) X Ly ) \Zy ™ )
f: 2(2) — X"
Refine- G- )
homomorphism
ment
for some appro-
priate G < S,

Homomorphism of group actions

Let G acton X, Y.
f: X — Y is a G-homomorphism if

f(gx) =gf(x), VxeX,gcG
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‘ Graphs ‘ linear Codes
Grou n AL
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homomorphism
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Canonization of linear Codes

Example: A refinement procedure for linear codes

Let

ole ngo’kl)xn be an ordered basis matrix, which generates a
linear code C

o C; < Z4" denote the punctured code of C in
i€{0,...,n—1}

e swe(C) € Z[Xo, X1, X2] be the symmetrized weight
enumerator of C (or any other invariant for equivalent codes)

The function

F 1 (Glhguha)(Za) x Z5") \Z§O ™ — (Z[Xo, X1, Xa])"
M — (swe(Co),...,swe(Ch1))

is an S,-homomorphism.
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Canonization of linear Codes

Example

Code C generated by <(1J 2 :1)) g)

swe(Co) | X§ +2X3Xo + 4XZX? + 4XZ X1 Xo + XGXZ + 4Xo X1 X2
swe(G) | X3 +2X3 X1 +2X3Xo + AX2 X1 Xo + XEXZ + 4Xo X2 Xa + 2Xo X1 X3

swe(Gs) | X3+ 6X2XZ + 3XZX2 + 6 X X2 Xa
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Canonization of linear Codes

Example

Code C generated by (é 2 :1)) g)

X§ +2X3 X1 + 2X3 X0 4+ 4XEX1 Xo + XEXZ + 4Xo XEXo + 2Xo X1 X2

Xg 4+ 2XgX1 + 2X§ Xo + 4XGX1 Xo + XGXZ + AXo X7 Xo + 2Xo Xo X3

XG4+ 6X2X2 + 3X2X2 + 6Xo X2 X,
Suppose swe( () > > =

12/20



Canonization of linear Codes
Example

| <1 0 3 2>
0110
VRN
2 1
(173) | (17273)
3
1
o o5
2——1
:d/ \(1,2) id (2,3)

13 /20
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Remember that the nodes of this tree represents orbits:
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= (O 11 O)
is a synonym for the orbit

(GL(ko,kl)(Z4) X Zzn) I

Example continued
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Canonization of linear Codes

Problem

Remember that the nodes of this tree represents orbits:

A fast canonization algorithm for the calculation of orbit
representatives in (GL kg k,)(Za) x Z3") T

14 /20



The inner group action
Modifications of the group action

A common stabilizer

The group GL (4, x,)(Za) does not act faithfully (for k1 > 0). There
is a common stabilizer

N:=h+{(0 28)|Bezh)
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The inner group action
Modifications of the group action

A common stabilizer

The group GL (4, x,)(Za) does not act faithfully (for k1 > 0). There
is a common stabilizer

N:=h+{(0 28)|Bezh)

o’

Replacement of the group

Instead of GLy, k,)(Za) x Z3" use

G = (Gl(ky k1) (Za)/N) x Z3"

15/20



The inner group action

Modifications of the nodes of the backtrack tree

Let (bo, ..., bn—1) be the ordering of {0,...,n— 1} in which the
columns are fixed during the backtracking procedure.

i-semicanonical representatives

Represent the nodes 7l on level i by another orbit representative
r0m) with:

Mieo.,. i) (TC™) < Moy 1y (D), VT € G(nT)
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The inner group action

Modifications of the nodes of the backtrack tree

Let (bo, ..., bn—1) be the ordering of {0,...,n— 1} in which the
columns are fixed during the backtracking procedure.

i-semicanonical representatives

Represent the nodes 7l on level i by another orbit representative
r0m) with:

Mieo.,. i) (TC™) < Moy 1y (D), VT € G(nT)

Conclusion:

| A,

We only need a procedure to calculate F+17) or equivalently we
must determine the stabilizer of [("7).

N

16 /20



The inner group action

The inner group action

With the right choice of (by, ..., bj_1) we can guarantee

by, by (T =

Yo @o* * %
0 0 |m = *

Ys—1 * *
0

to be in reduced row echelon form:
e Pivot Elements in {1,2}

17 /20



The inner group action

The inner group action

With the right choice of (by, ..., bj_1) we can guarantee

by, by (T =

Yo @o* * %
0 0 |m = *

Ys—1 * *
0 0

to be in reduced row echelon form:
e Pivot Elements in {1,2}

@ ~; = 2 implies a row that is a multiple of 2

17 /20



The inner group action

The inner group action

With the right choice of (by, ..., bj_1) we can guarantee

by, by (T =

Yo @o* * %
0 0 |m = *

Ys—1 * *
0

to be in reduced row echelon form:
e Pivot Elements in {1,2}
@ ~; = 2 implies a row that is a multiple of 2

@ the entries above the pivot elements are reduced modulo ~;

17 /20



The inner group action

The inner group action

With the right choice of (by, ..., bj_1) we can guarantee

by, by (T =

Yo @o* * %
0 0 |m = *

Ys—1 * *
0

to be in reduced row echelon form:
e Pivot Elements in {1,2}
@ ~; = 2 implies a row that is a multiple of 2
@ the entries above the pivot elements are reduced modulo ~;

0 Vi =2<=1i2>k
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The inner group action

The main observation

Let (E[)a}l) be the type Of n(bo,...,b,', )(r(’vﬂ'))

With the right choice of (by,. .., bj_1) we can guarantee, that
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L. B o
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A 0
ith (A N
o (% 70) o) wn o< G, oo

18 /20



The inner group action

The main observation

But:

Sro ) <
( ( 0, 1)X’ n(bo """" bi—l)(r(l’ﬂ))

is an elementary abelian 2-group:
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The inner group action

The main observation

But:

Sro ) <
( ( 0, 1)X’ n(bo """" bi—l)(r(l’ﬂ))

is an elementary abelian 2-group:

D A\ (E B DE A+B
(0 Ik1> <0 /k1>N_<O e )N

o It has at most k generators

Allows the implementation of a fast inner minimization
algorithm!
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The inner group action

Codes over finite fields and free Z4-linear codes

G = GLi(R) x R*"

n(bo,“.,bifl)(r("vﬂ) defines some unique partition (po, ..., p—1) of
{0,...,s — 1} such that

is generated by

da=p<=acp;
wb = p <= supp*(T's) C pj

20/20
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