design clan: 25_56_28
25-(56,28,m*5), 1 <= m <= 449; (11/172) lambda_max=4495, lambda_max_half=2247
the clan contains 11 families:
- family 0, lambda = 810 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,6480) (#18402)
-
7-(40,12,42768) (#18403) 7-(39,12,36288) (#18405)
7-(39,11,6480) (#18404)
-
6-(40,12,242352) (#18409) 6-(39,12,199584) (#18411) 6-(38,12,163296) (#18419)
6-(39,11,42768) (#18410) 6-(38,11,36288) (#18416)
6-(38,10,6480) (#18415)
-
5-(40,12,1211760) (#18421) 5-(39,12,969408) (#18423) 5-(38,12,769824) (#18431) 5-(37,12,606528) (#18439)
5-(39,11,242352) (#18422) 5-(38,11,199584) (#18428) 5-(37,11,163296) (#18437)
5-(38,10,42768) (#18427) 5-(37,10,36288) (#18434)
5-(37,9,6480) (#18433)
-
8-(40,12,6480) (#18402)
- family 1, lambda = 850 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,6800) (#18363)
-
7-(40,12,44880) (#18364) 7-(39,12,38080) (#18366)
7-(39,11,6800) (#18365)
-
6-(40,12,254320) (#18370) 6-(39,12,209440) (#18372) 6-(38,12,171360) (#18380)
6-(39,11,44880) (#18371) 6-(38,11,38080) (#18377)
6-(38,10,6800) (#18376)
-
5-(40,12,1271600) (#18382) 5-(39,12,1017280) (#18384) 5-(38,12,807840) (#18392) 5-(37,12,636480) (#18400)
5-(39,11,254320) (#18383) 5-(38,11,209440) (#18389) 5-(37,11,171360) (#18398)
5-(38,10,44880) (#18388) 5-(37,10,38080) (#18395)
5-(37,9,6800) (#18394)
-
8-(40,12,6800) (#18363)
- family 2, lambda = 1080 containing 4 designs:
minpath=(0, 19, 0) minimal_t=5 - family 3, lambda = 1215 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,9720) (#18324)
-
7-(40,12,64152) (#18325) 7-(39,12,54432) (#18327)
7-(39,11,9720) (#18326)
-
6-(40,12,363528) (#18331) 6-(39,12,299376) (#18333) 6-(38,12,244944) (#18341)
6-(39,11,64152) (#18332) 6-(38,11,54432) (#18338)
6-(38,10,9720) (#18337)
-
5-(40,12,1817640) (#18343) 5-(39,12,1454112) (#18345) 5-(38,12,1154736) (#18353) 5-(37,12,909792) (#18361)
5-(39,11,363528) (#18344) 5-(38,11,299376) (#18350) 5-(37,11,244944) (#18359)
5-(38,10,64152) (#18349) 5-(37,10,54432) (#18356)
5-(37,9,9720) (#18355)
-
8-(40,12,9720) (#18324)
- family 4, lambda = 1255 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,10040) (#18285)
-
7-(40,12,66264) (#18286) 7-(39,12,56224) (#18288)
7-(39,11,10040) (#18287)
-
6-(40,12,375496) (#18292) 6-(39,12,309232) (#18294) 6-(38,12,253008) (#18302)
6-(39,11,66264) (#18293) 6-(38,11,56224) (#18299)
6-(38,10,10040) (#18298)
-
5-(40,12,1877480) (#18304) 5-(39,12,1501984) (#18306) 5-(38,12,1192752) (#18314) 5-(37,12,939744) (#18322)
5-(39,11,375496) (#18305) 5-(38,11,309232) (#18311) 5-(37,11,253008) (#18320)
5-(38,10,66264) (#18310) 5-(37,10,56224) (#18317)
5-(37,9,10040) (#18316)
-
8-(40,12,10040) (#18285)
- family 5, lambda = 1620 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,12960) (#18246)
-
7-(40,12,85536) (#18247) 7-(39,12,72576) (#18249)
7-(39,11,12960) (#18248)
-
6-(40,12,484704) (#18253) 6-(39,12,399168) (#18255) 6-(38,12,326592) (#18263)
6-(39,11,85536) (#18254) 6-(38,11,72576) (#18260)
6-(38,10,12960) (#18259)
-
5-(40,12,2423520) (#18265) 5-(39,12,1938816) (#18267) 5-(38,12,1539648) (#18275) 5-(37,12,1213056) (#18283)
5-(39,11,484704) (#18266) 5-(38,11,399168) (#18272) 5-(37,11,326592) (#18281)
5-(38,10,85536) (#18271) 5-(37,10,72576) (#18278)
5-(37,9,12960) (#18277)
-
8-(40,12,12960) (#18246)
- family 6, lambda = 1660 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,13280) (#18207)
-
7-(40,12,87648) (#18208) 7-(39,12,74368) (#18210)
7-(39,11,13280) (#18209)
-
6-(40,12,496672) (#18214) 6-(39,12,409024) (#18216) 6-(38,12,334656) (#18224)
6-(39,11,87648) (#18215) 6-(38,11,74368) (#18221)
6-(38,10,13280) (#18220)
-
5-(40,12,2483360) (#18226) 5-(39,12,1986688) (#18228) 5-(38,12,1577664) (#18236) 5-(37,12,1243008) (#18244)
5-(39,11,496672) (#18227) 5-(38,11,409024) (#18233) 5-(37,11,334656) (#18242)
5-(38,10,87648) (#18232) 5-(37,10,74368) (#18239)
5-(37,9,13280) (#18238)
-
8-(40,12,13280) (#18207)
- family 7, lambda = 1975 containing 4 designs:
minpath=(0, 19, 0) minimal_t=5 - family 8, lambda = 2025 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,16200) (#18129)
-
7-(40,12,106920) (#18130) 7-(39,12,90720) (#18132)
7-(39,11,16200) (#18131)
-
6-(40,12,605880) (#18136) 6-(39,12,498960) (#18138) 6-(38,12,408240) (#18146)
6-(39,11,106920) (#18137) 6-(38,11,90720) (#18143)
6-(38,10,16200) (#18142)
-
5-(40,12,3029400) (#18148) 5-(39,12,2423520) (#18150) 5-(38,12,1924560) (#18158) 5-(37,12,1516320) (#18166)
5-(39,11,605880) (#18149) 5-(38,11,498960) (#18155) 5-(37,11,408240) (#18164)
5-(38,10,106920) (#18154) 5-(37,10,90720) (#18161)
5-(37,9,16200) (#18160)
-
8-(40,12,16200) (#18129)
- family 9, lambda = 2065 containing 20 designs:
minpath=(1, 16, 0) minimal_t=5-
8-(40,12,16520) (#18168)
-
7-(40,12,109032) (#18169) 7-(39,12,92512) (#18171)
7-(39,11,16520) (#18170)
-
6-(40,12,617848) (#18175) 6-(39,12,508816) (#18177) 6-(38,12,416304) (#18185)
6-(39,11,109032) (#18176) 6-(38,11,92512) (#18182)
6-(38,10,16520) (#18181)
-
5-(40,12,3089240) (#18187) 5-(39,12,2471392) (#18189) 5-(38,12,1962576) (#18197) 5-(37,12,1546272) (#18205)
5-(39,11,617848) (#18188) 5-(38,11,508816) (#18194) 5-(37,11,416304) (#18203)
5-(38,10,109032) (#18193) 5-(37,10,92512) (#18200)
5-(37,9,16520) (#18199)
-
8-(40,12,16520) (#18168)
- family 10, lambda = 2200 containing 4 designs:
minpath=(0, 19, 0) minimal_t=5
created: Fri Oct 23 11:21:33 CEST 2009