design clan: 8_24_12
8-(24,12,m*70), 1 <= m <= 13; (4/38) lambda_max=1820, lambda_max_half=910
the clan contains 4 families:
- family 0, lambda = 350 containing 16 designs:
minpath=(0, 0, 0) minimal_t=4-
8-(24,12,350)
-
7-(24,12,1190) (#8729) 7-(23,12,840)
7-(23,11,350)
-
6-(24,12,3570) (#8728) 6-(23,12,2380) (#8732) 6-(22,12,1540)
6-(23,11,1190) (#8727) 6-(22,11,840) (#8726)
6-(22,10,350) (#8685)
-
5-(24,12,9690) (#5158) 5-(23,12,6120) (#8730) 5-(22,12,3740) (#8736) 5-(21,12,2200)
5-(23,11,3570) (#8691) 5-(22,11,2380) (#116) 5-(21,11,1540) (#961)
5-(22,10,1190) (#8686) 5-(21,10,840) (#960)
5-(21,9,350) (#8687)
-
4-(24,12,24225) 4-(23,12,14535) 4-(22,12,8415) 4-(21,12,4675) 4-(20,12,2475)
4-(23,11,9690) 4-(22,11,6120) 4-(21,11,3740) 4-(20,11,2200)
4-(22,10,3570) 4-(21,10,2380) (#115) 4-(20,10,1540)
4-(21,9,1190) 4-(20,9,840)
4-(20,8,350)
-
8-(24,12,350)
- family 1, lambda = 490 containing 1 designs:
minpath=(3, 0, 0) minimal_t=5 - family 2, lambda = 630 containing 15 designs:
minpath=(0, 0, 0) minimal_t=4-
8-(24,12,630)
-
7-(24,12,2142) (#9345) 7-(23,12,1512)
7-(23,11,630)
-
6-(24,12,6426) (#9344) 6-(23,12,4284) (#9351) 6-(22,12,2772)
6-(23,11,2142) (#9343) 6-(22,11,1512) (#8705)
6-(22,10,630)
-
5-(24,12,17442) (#972) 5-(23,12,11016) (#9348) 5-(22,12,6732) (#9355) 5-(21,12,3960)
5-(23,11,6426) (#971) 5-(22,11,4284) (#200) 5-(21,11,2772) (#952)
5-(22,10,2142) (#970) 5-(21,10,1512) (#951)
5-(21,9,630) (#969)
-
4-(24,12,43605) 4-(23,12,26163) 4-(22,12,15147) 4-(21,12,8415) 4-(20,12,4455)
4-(23,11,17442) 4-(22,11,11016) 4-(21,11,6732) 4-(20,11,3960)
4-(22,10,6426) 4-(21,10,4284) (#199) 4-(20,10,2772)
4-(21,9,2142) 4-(20,9,1512)
4-(20,8,630)
-
8-(24,12,630)
- family 3, lambda = 770 containing 6 designs:
minpath=(0, 0, 0) minimal_t=4-
8-(24,12,770)
-
7-(24,12,2618) 7-(23,12,1848)
7-(23,11,770)
-
6-(24,12,7854) 6-(23,12,5236) 6-(22,12,3388)
6-(23,11,2618) 6-(22,11,1848) (#8709)
6-(22,10,770)
-
5-(24,12,21318) (#3736) 5-(23,12,13464) 5-(22,12,8228) 5-(21,12,4840)
5-(23,11,7854) 5-(22,11,5236) (#246) 5-(21,11,3388) (#954)
5-(22,10,2618) 5-(21,10,1848) (#953)
5-(21,9,770)
-
4-(24,12,53295) 4-(23,12,31977) 4-(22,12,18513) 4-(21,12,10285) 4-(20,12,5445)
4-(23,11,21318) 4-(22,11,13464) 4-(21,11,8228) 4-(20,11,4840)
4-(22,10,7854) 4-(21,10,5236) (#245) 4-(20,10,3388)
4-(21,9,2618) 4-(20,9,1848)
4-(20,8,770)
-
8-(24,12,770)
created: Fri Oct 23 11:20:51 CEST 2009