´

get_plesken_matrix(km, t, k);

Computes the Plesken matrix for given t and k from the KM-file. t and k must not be the same as when the KM-file was computed but we must have $0 \le t \le k \le k_0$ (where k_0 is the value of k when the KM-file was created).

Example:

gap> P := get_plesken_matrix(km, 5, 6);
discreta_batch get_plesken_matrix KM_PGGL_2_32_t5_k6.txt discreta_batch_output\
.g discreta_tmp 5 6 
[ [ 1, 0, 0, 5, 5, 5, 5, 5, 1, 1, 1, 0, 0, 0, 0, 0 ], 
  [ 0, 1, 0, 0, 4, 4, 8, 0, 0, 0, 0, 4, 4, 4, 0, 0 ], 
  [ 0, 0, 1, 2, 1, 4, 3, 2, 1, 1, 1, 2, 5, 2, 3, 1 ], 
  [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
gap> 

get_plesken_matrix_with_inverse(km, t, k);

Example:

gap> P1 := get_plesken_matrix_with_inverse(km, 5, 6);
discreta_batch get_plesken_matrix_with_inverse KM_PGGL_2_32_t5_k6.txt discreta\
_batch_output.g discreta_tmp 5 6 
[ [ [ 1, 0, 0, 5, 5, 5, 5, 5, 1, 1, 1, 0, 0, 0, 0, 0 ], 
      [ 0, 1, 0, 0, 4, 4, 8, 0, 0, 0, 0, 4, 4, 4, 0, 0 ], 
      [ 0, 0, 1, 2, 1, 4, 3, 2, 1, 1, 1, 2, 5, 2, 3, 1 ], 
      [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ], 
  [ [ 1, 0, 0, -5, -5, -5, -5, -5, -1, -1, -1, 0, 0, 0, 0, 0 ], 
      [ 0, 1, 0, 0, -4, -4, -8, 0, 0, 0, 0, -4, -4, -4, 0, 0 ], 
      [ 0, 0, 1, -2, -1, -4, -3, -2, -1, -1, -1, -2, -5, -2, -3, -1 ], 
      [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ], 
  [ 0, 1, 2, 3, 4, 5, 8 ], [ 1, 1, 1, 1, 1, 3, 13 ] ]
gap> 


Back to the DISCRETA-GAP interface
Back to the typical GAP-session
Last updated: July 26, 1999, Evi Haberberger

University of Bayreuth -