´

next up previous
Next: About this document ... Up: Partitioned Steiner 5-Designs Previous: Invariants

Bibliography

1
W. O. ALLTOP: On the construction of block designs. J. Comb. Theory(A) 1 (1966), 501-502.

2
W. O. ALLTOP: Some 3-designs and a 4-design. J. Comb. Theory(A) 11 (1966), 190-195.

3
TH. BETH, D. JUNGNICKEL, H. LENZ: Design Theory. Second edition, Cambridge Univ. Press, 1999.

4
A. BETTEN, R. LAUE, A. WASSERMANN: A Steiner 5-Design on 36 Points. Designs, Codes and Cryptography 17 (1999), 181-186.

5
A. BETTEN, R. LAUE, S. MOLODTSOV, A. WASSERMANN: Steiner systems with automorphism group $PSL(2,71)$, $PSL(2,83)$ and $P\Sigma L(2,3^5)$. J. geom. 67 (2000), 35-41.

6
R. H. F. DENNISTON: The problem of the higher values of $t$. Annals of Discrete Mathemtics 7 (1980), 65-70.

7
R. H. F. DENNISTON: Some new 5-designs. Bull. London Math. Soc. 8 (1976), 263-267.

8
M. J. GRANNELL, T. S. GRIGGS, AND R. MATHON: Some Steiner 5-designs with 108 and 132 points. J. Comb. Des. 1 (1993), 213-238.

9
M. J. GRANNELL, T. S. GRIGGS, AND R. MATHON:
Steiner systems $S(5,6,v)$ with v = 72 and 84.
Mathematics of Computation, 67 (1998),357-359.

10
B. HUPPERT: Endliche Gruppen I. Springer Grundlehren der mathematischen Wissenschaften Bd 134, (1967).

11
E. S. KRAMER, D. M. MESNER: $t$-designs on hypergraphs. Discrete Math. 15 (1976), 263-296.

12
R. MATHON: Searching for spreads and packings. In J. W. P. Hirschfeld, S. S. Magliveras, and M. J. de Resmini, editors, Geometry, Combinatorial Designs and Related Structures, Proceedings of the first Pythagorean conference, volume 245, pages 161-176. London Math. Soc. Lect. Notes, 1997bitemColbournMathon:96

13
W. H. MILLS:
A new 5-design.
Ars Combinatoria, 6 (1978), 193-195.

14
R. LAUE, J. NEUBÜSER, U. SCHOENWAELDER: Algorithms for finite soluble groups and the SOGOS system. Computational Group Theory, M. D. Atkinson ed.,Academic Press, London (1984), 105-135.

15
R. LAUE: Eine konstruktive Version des Lemmas von Burnside. Bayreuther Math. Schr. 28 (1989), 111-125.

16
R. LAUE: Constructing objects up to isomorphism, simple 9-designs. Proceedings of ALCOMA99, Springer 2001, 232-260.

17
I. NIVEN, H. S. ZUCKERMAN: Einführung in die Zahlentheorie I. B.I. Hochschultaschenbücher 46, (1976).

18
E. WITT: Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Seminar Univ. Hamburg 12 (1938), 256-264.

19
J. WOLFART: Einführung in die Zahlentheorie und Algebra. Vieweg Studium, Aufbaukurs Mathematik, 1996.



N.N. 2002-02-25

University of Bayreuth -