´

2-(6,3,lambda;2) designs admitting the third power of a singer cycle as an automorphism group

 

The Group A

Name: Singer6_pow_3

Subgroup of GL(6,2)

Order: 21

Generator:
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0


The Kramer-Mesner Matrix M^A_{2,3}

Number of rows: 33

Number of columns: 69

2 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 2 1 1 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
0 2 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 2 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 3 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 2 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 2 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0


The orbits of A on the set of 2-subspaces of GF(2)^6

Number of orbits: 33

Nr

Representative

orbit length

0

[ 1 1 0 0 0 1 ]
[ 0 0 0 0 1 1 ]

21

1

[ 0 0 0 0 1 1 ]
[ 0 1 1 0 0 1 ]

21

2

[ 1 0 1 1 1 1 ]
[ 0 1 1 0 0 0 ]

21

3

[ 1 0 1 0 1 1 ]
[ 0 0 0 0 1 1 ]

21

4

[ 1 0 1 0 0 0 ]
[ 0 1 1 0 1 0 ]

21

5

[ 1 1 0 1 1 1 ]
[ 0 0 1 1 1 1 ]

21

6

[ 1 0 1 1 0 1 ]
[ 0 0 0 1 0 1 ]

21

7

[ 0 0 0 1 1 1 ]
[ 0 1 1 1 1 1 ]

21

8

[ 1 0 1 0 1 1 ]
[ 0 1 1 0 1 1 ]

21

9

[ 0 1 1 1 0 1 ]
[ 0 0 1 1 0 0 ]

21

10

[ 1 1 0 1 1 1 ]
[ 0 0 0 1 0 1 ]

21

11

[ 0 0 0 1 1 0 ]
[ 0 0 1 1 1 1 ]

21

12

[ 0 1 0 0 1 1 ]
[ 0 0 0 0 1 0 ]

7

13

[ 1 1 1 1 0 1 ]
[ 0 0 0 0 0 1 ]

21

14

[ 0 0 0 0 0 1 ]
[ 0 1 1 1 0 1 ]

21

15

[ 1 0 1 0 1 0 ]
[ 0 1 1 0 0 0 ]

21

16

[ 1 0 1 0 1 0 ]
[ 0 0 0 0 1 0 ]

21

17

[ 1 1 0 1 1 1 ]
[ 0 0 0 1 0 0 ]

21

18

[ 1 0 1 1 0 0 ]
[ 0 0 0 0 1 0 ]

21

19

[ 1 1 1 1 1 1 ]
[ 0 0 0 0 0 1 ]

21

20

[ 1 0 1 0 0 1 ]
[ 0 1 1 0 0 0 ]

21

21

[ 0 1 1 1 1 1 ]
[ 0 0 1 1 1 0 ]

21

22

[ 0 0 0 0 0 1 ]
[ 0 0 1 1 1 0 ]

21

23

[ 0 0 0 0 1 0 ]
[ 0 0 0 1 1 1 ]

21

24

[ 0 0 1 0 0 0 ]
[ 0 0 0 1 1 1 ]

21

25

[ 1 0 1 0 0 0 ]
[ 0 1 1 1 0 0 ]

21

26

[ 1 0 1 1 1 0 ]
[ 0 1 1 0 0 1 ]

21

27

[ 1 1 0 1 0 0 ]
[ 0 0 0 0 1 0 ]

21

28

[ 1 1 0 0 1 0 ]
[ 0 0 0 1 1 0 ]

21

29

[ 1 1 1 0 1 0 ]
[ 0 0 1 1 0 0 ]

21

30

[ 0 0 0 1 0 1 ]
[ 0 1 1 1 1 1 ]

7

31

[ 1 1 0 1 1 1 ]
[ 0 0 0 1 1 0 ]

21

32

[ 0 0 0 1 1 1 ]
[ 0 0 1 1 0 0 ]

7


The orbits of A on the set of 3-subspaces of GF(2)^6

Number of orbits: 69

Nr

Representative

orbit length

0

[ 1 1 0 0 1 1 ]
[ 0 0 0 1 1 1 ]
[ 0 0 1 1 1 0 ]

21

1

[ 1 0 1 0 1 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 0 0 1 ]

21

2

[ 1 0 1 0 0 1 ]
[ 0 0 0 1 1 0 ]
[ 0 0 0 0 1 1 ]

21

3

[ 1 0 1 0 0 1 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 0 1 0 ]

21

4

[ 1 1 0 1 0 1 ]
[ 0 0 0 1 0 1 ]
[ 0 0 1 1 1 0 ]

21

5

[ 1 0 1 1 0 1 ]
[ 0 1 1 1 0 1 ]
[ 0 0 0 1 0 1 ]

21

6

[ 1 0 1 0 0 1 ]
[ 0 0 0 0 1 0 ]
[ 0 0 0 0 0 1 ]

21

7

[ 1 1 0 1 1 1 ]
[ 0 0 0 1 0 1 ]
[ 0 0 1 0 1 0 ]

21

8

[ 1 0 1 0 1 0 ]
[ 0 1 1 0 1 0 ]
[ 0 0 0 0 1 0 ]

21

9

[ 1 0 1 0 0 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 0 1 1 ]

21

10

[ 0 0 0 0 1 0 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 0 0 1 ]

21

11

[ 1 0 1 0 1 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 0 1 1 ]

21

12

[ 1 1 1 1 1 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 0 0 1 0 ]

21

13

[ 1 0 1 1 1 1 ]
[ 0 1 1 1 0 1 ]
[ 0 0 0 1 0 1 ]

21

14

[ 0 1 0 1 0 1 ]
[ 0 0 0 1 0 0 ]
[ 0 0 1 0 0 0 ]

21

15

[ 0 0 0 0 0 1 ]
[ 0 1 1 1 1 0 ]
[ 0 0 0 1 1 0 ]

21

16

[ 0 0 0 0 0 1 ]
[ 0 1 0 0 1 0 ]
[ 0 0 1 1 0 0 ]

21

17

[ 0 1 0 0 1 1 ]
[ 0 0 0 0 1 0 ]
[ 0 0 1 1 1 0 ]

21

18

[ 1 1 1 1 1 1 ]
[ 0 0 1 1 1 1 ]
[ 0 0 0 1 1 0 ]

21

19

[ 1 1 1 1 0 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 0 1 1 0 ]

21

20

[ 0 0 0 0 0 1 ]
[ 0 1 0 1 0 0 ]
[ 0 0 1 0 0 0 ]

21

21

[ 1 1 0 0 1 1 ]
[ 0 0 0 0 1 1 ]
[ 0 0 0 1 0 0 ]

21

22

[ 1 0 1 0 0 1 ]
[ 0 0 0 0 1 0 ]
[ 0 0 0 1 0 1 ]

21

23

[ 1 0 1 0 1 1 ]
[ 0 1 1 1 1 1 ]
[ 0 0 0 0 1 1 ]

21

24

[ 1 0 1 1 1 1 ]
[ 0 1 1 0 1 0 ]
[ 0 0 0 0 1 0 ]

21

25

[ 1 1 0 0 0 1 ]
[ 0 0 0 1 1 1 ]
[ 0 0 0 0 1 0 ]

21

26

[ 1 1 0 1 1 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 0 0 1 0 ]

21

27

[ 0 0 0 0 0 1 ]
[ 0 1 0 1 1 0 ]
[ 0 0 1 0 0 0 ]

21

28

[ 1 0 1 0 1 1 ]
[ 0 1 1 1 0 1 ]
[ 0 0 0 0 0 1 ]

21

29

[ 1 0 1 1 0 0 ]
[ 0 1 1 1 1 0 ]
[ 0 0 0 1 1 0 ]

21

30

[ 1 1 0 0 1 1 ]
[ 0 0 0 1 0 1 ]
[ 0 0 1 1 0 0 ]

21

31

[ 0 0 0 0 0 1 ]
[ 0 1 0 0 0 0 ]
[ 0 0 1 1 0 0 ]

21

32

[ 1 1 1 1 0 1 ]
[ 0 0 1 1 1 0 ]
[ 0 0 0 1 0 0 ]

21

33

[ 1 0 1 1 0 1 ]
[ 0 1 1 1 1 1 ]
[ 0 0 0 1 1 1 ]

21

34

[ 1 0 1 1 0 1 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 0 0 1 ]

21

35

[ 0 0 0 0 1 0 ]
[ 0 1 1 1 1 1 ]
[ 0 0 0 1 1 1 ]

21

36

[ 1 0 1 0 1 1 ]
[ 0 1 1 1 1 1 ]
[ 0 0 0 1 0 1 ]

21

37

[ 1 0 1 1 0 1 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 1 1 0 ]

21

38

[ 1 0 1 1 0 0 ]
[ 0 1 1 1 0 0 ]
[ 0 0 0 1 0 0 ]

21

39

[ 1 0 1 1 0 1 ]
[ 0 0 0 1 1 0 ]
[ 0 0 0 0 0 1 ]

21

40

[ 1 1 0 0 1 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 1 1 1 0 ]

21

41

[ 1 1 0 0 0 1 ]
[ 0 0 0 1 1 0 ]
[ 0 0 1 0 0 0 ]

21

42

[ 1 0 1 1 0 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 0 1 1 ]

21

43

[ 1 1 1 1 1 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 0 1 0 0 ]

21

44

[ 1 1 0 0 0 1 ]
[ 0 0 0 1 1 1 ]
[ 0 0 1 1 1 0 ]

21

45

[ 1 1 0 0 0 1 ]
[ 0 0 0 0 1 1 ]
[ 0 0 1 0 1 0 ]

21

46

[ 1 1 0 1 0 0 ]
[ 0 0 0 1 1 0 ]
[ 0 0 0 0 1 1 ]

21

47

[ 1 1 0 0 1 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 0 1 0 0 ]

21

48

[ 1 0 1 0 0 1 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 1 1 0 ]

21

49

[ 1 1 0 1 0 0 ]
[ 0 0 0 0 1 0 ]
[ 0 0 1 0 0 0 ]

21

50

[ 0 0 0 1 1 1 ]
[ 0 0 0 0 1 0 ]
[ 0 0 1 1 1 0 ]

21

51

[ 1 0 1 1 1 1 ]
[ 0 1 1 1 0 1 ]
[ 0 0 0 0 1 1 ]

21

52

[ 1 0 1 0 1 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 1 0 1 ]

21

53

[ 1 1 0 1 1 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 1 1 1 0 ]

21

54

[ 1 1 0 1 0 1 ]
[ 0 0 0 0 1 0 ]
[ 0 0 1 1 0 0 ]

21

55

[ 1 1 0 1 0 1 ]
[ 0 0 0 0 0 1 ]
[ 0 0 1 1 1 0 ]

21

56

[ 1 1 0 1 0 0 ]
[ 0 0 0 0 1 0 ]
[ 0 0 1 1 1 0 ]

21

57

[ 0 0 0 0 1 1 ]
[ 0 1 0 0 0 0 ]
[ 0 0 1 1 1 0 ]

3

58

[ 1 0 1 0 1 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 1 1 1 ]

21

59

[ 1 1 0 0 1 1 ]
[ 0 0 0 1 1 1 ]
[ 0 0 1 0 0 0 ]

21

60

[ 1 1 0 0 1 1 ]
[ 0 0 0 1 1 1 ]
[ 0 0 1 1 0 0 ]

21

61

[ 0 0 0 0 0 1 ]
[ 0 0 0 1 1 0 ]
[ 0 0 1 0 0 0 ]

21

62

[ 1 0 1 0 1 1 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 1 0 0 ]

21

63

[ 0 0 0 1 0 0 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 0 0 1 ]

21

64

[ 1 0 1 1 0 1 ]
[ 0 0 0 1 1 0 ]
[ 0 0 0 1 0 1 ]

21

65

[ 1 0 1 1 1 0 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 1 1 0 ]

21

66

[ 1 0 1 1 0 1 ]
[ 0 1 1 0 0 1 ]
[ 0 0 0 1 0 1 ]

21

67

[ 1 1 0 0 0 1 ]
[ 0 0 0 1 1 1 ]
[ 0 0 1 0 0 0 ]

3

68

[ 1 0 1 1 0 0 ]
[ 0 1 1 0 1 1 ]
[ 0 0 0 1 0 0 ]

3


Solutions for lambda = 3

number of solutions: 42

001000000011000010000010000100000100100010001000001000000000000001111
100000000001000010001010000010000101000000001000100000100000000001111
000000010110000010000001001100000000001111000000000001000100001000010
000001010010000011000000001100000000010110000000000001000110001000010
000000110010000000100010001100000000001110000001000010000100100000010
000001010010000001000010001100000000010110000001000000000100100100010
000000110010000000100100001100000100000110000000010010000110000000010
000000010110000000000101001100000100000111000000010000000100000100010
000000011001000000101000001000000001010101000100100000000100000001001
001000001001000100100000000000000000110001100100001000010100000001001
100000000100000110000001000010000000001001100000000001110100001000010
100001000000000111000000000010000000010000100000000001110110001000010
100000100000000100100010000010000000001000100001000010110100100000010
100001000000000101000010000010000000010000100001000000110100100100010
100000100000000100100100000010000100000000100000010010110110000000010
100000000100000100000101000010000100000001100000010000110100000100010
010010000010000011000000000100100010000010000010000001000110010000001
010000000110001010000000000100101010000010000010000000000110100000001
010010000010000001000010000100100000001010000010010000000101010000001
010000100010000000010010000100100000001010000010000000001101100000001
010000000110001000000000010100101100000010000010010000000100000100001
010000100010000000010000010100100100000010000010000001001100000100001
010010001000000000011000000000101001000000001110100000000100000000110
010110000000000101000000000000100000001001100010010100010000000000011
010100000100000100010000000000110000001001100010000001010000000000011
010010100000000100100000000001100000000000100010010100010010000000011
010000000100100100100000000001101000000000100010000000010010100000011
010000000000110101000000000000101000010000100010000000010000100100011
010000100000010100010000000000110000010000100010000001010000000100011
001010001000000000010000100000001000100000011100001000000100000010110
100010000000000011000000100010000010000000010000000001100110010010001
100000000100001010000000100010001010000000010000000000100110100010001
100010000000000001000010100010000000001000010000010000100101010010001
100000100000000000010010100010000000001000010000000000101101100010001
100000000100001000000000110010001100000000010000010000100100000110001
100000100000000000010000110010000100000000010000000001101100000110001
000110010000000001000000101000000000001101010000010100000000000010011
000100010100000000010000101000010000001101010000000001000000000010011
000010110000000000100000101001000000000100010000010100000010000010011
000000010100100000100000101001001000000100010000000000000010100010011
000000010000110001000000101000001000010100010000000000000000100110011
000000110000010000010000101000010000010100010000000001000000000110011


Back to the title page


Michael Braun
2001-10-05

University of Bayreuth -