2-(7,3,lambda;2) designs admitting a singer cycle as automorhism group |
The Group A
Name: Singer_cycle7
Subgroup of GL(7,2)
Order: 127
Generator:
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
The Kramer-Mesner Matrix M^A_{2,3}
Number of rows: 21
Number of columns: 93
3 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 3 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 1
1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0
1 0 0 0 3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0
0 0 1 0 1 0 1 1 0 0 0 0 0
1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 3 0
0 0 0 0 0 1 0 0 1 1 1 0 0
1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1
3 0 0 0 0 1 0 0 1 1 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 3 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 1 1 1 1 0 0 1
0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 3
0 1 0 0 0 1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 3 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 3 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 3 0 1 0 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 3 0 1 0 1 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 1 1 1
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 3 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0
0 3 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 3 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 3 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 3 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 3 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1
0 0 0 1 1 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 3
1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0
1 0 1 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
0 1 3 1 1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 0 3 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1
The orbits of A on the set of 2-subspaces of GF(2)^7
Number of orbits: 21
Nr |
Representative |
orbit length |
0 |
[ 0 0 0 1 1 1 1 ] |
127 |
1 |
[ 0 1 1 1 0 0 0 ] |
127 |
2 |
[ 0 0 1 0 1 1 1 ] |
127 |
3 |
[ 0 0 0 0 0 0 1 ] |
127 |
4 |
[ 0 0 0 0 1 0 1 ] |
127 |
5 |
[ 0 0 1 1 0 0 0 ] |
127 |
6 |
[ 0 0 0 1 1 0 0 ] |
127 |
7 |
[ 0 0 0 0 0 0 1 ] |
127 |
8 |
[ 0 0 0 0 0 0 1 ] |
127 |
9 |
[ 0 0 0 0 1 1 1 ] |
127 |
10 |
[ 0 0 1 1 0 1 0 ] |
127 |
11 |
[ 0 0 1 0 0 1 0 ] |
127 |
12 |
[ 0 0 1 1 1 0 1 ] |
127 |
13 |
[ 0 0 0 1 1 1 1 ] |
127 |
14 |
[ 0 0 1 0 0 1 1 ] |
127 |
15 |
[ 0 0 0 1 1 0 1 ] |
127 |
16 |
[ 0 1 0 1 0 0 1 ] |
127 |
17 |
[ 0 1 1 0 1 1 1 ] |
127 |
18 |
[ 0 1 1 0 1 1 1 ] |
127 |
19 |
[ 0 0 0 0 0 0 1 ] |
127 |
20 |
[ 0 1 1 1 0 1 1 ] |
127 |
The orbits of A on the set of 3-subspaces of GF(2)^7
Number of orbits: 93
Nr |
Representative |
orbit length |
0 |
[ 0 0 0 1 0 1 1 ] |
127 |
1 |
[ 0 0 1 0 1 1 1 ] |
127 |
2 |
[ 0 0 0 0 0 1 1 ] |
127 |
3 |
[ 0 1 0 1 1 1 1 ] |
127 |
4 |
[ 0 0 1 1 0 0 1 ] |
127 |
5 |
[ 0 0 0 0 1 0 1 ] |
127 |
6 |
[ 0 0 0 0 0 1 1 ] |
127 |
7 |
[ 0 0 0 0 0 0 1 ] |
127 |
8 |
[ 0 1 1 1 1 0 1 ] |
127 |
9 |
[ 0 0 0 0 0 0 1 ] |
127 |
10 |
[ 0 0 0 0 0 0 1 ] |
127 |
11 |
[ 0 0 0 1 0 1 1 ] |
127 |
12 |
[ 0 0 1 1 1 1 1 ] |
127 |
13 |
[ 0 0 0 0 0 0 1 ] |
127 |
14 |
[ 0 0 1 1 0 1 1 ] |
127 |
15 |
[ 0 0 0 0 0 0 1 ] |
127 |
16 |
[ 0 0 0 1 1 0 0 ] |
127 |
17 |
[ 0 0 0 1 0 0 0 ] |
127 |
18 |
[ 0 0 0 0 0 0 1 ] |
127 |
19 |
[ 0 1 0 1 1 0 1 ] |
127 |
20 |
[ 0 0 0 1 0 0 0 ] |
127 |
21 |
[ 0 0 0 1 1 1 1 ] |
127 |
22 |
[ 0 0 0 1 0 0 0 ] |
127 |
23 |
[ 0 0 0 1 1 1 1 ] |
127 |
24 |
[ 0 0 0 0 1 0 0 ] |
127 |
25 |
[ 0 0 0 0 1 1 1 ] |
127 |
26 |
[ 0 0 0 0 0 0 1 ] |
127 |
27 |
[ 0 1 0 1 1 1 1 ] |
127 |
28 |
[ 0 0 1 1 0 1 1 ] |
127 |
29 |
[ 0 0 0 1 1 1 0 ] |
127 |
30 |
[ 0 0 0 0 1 1 1 ] |
127 |
31 |
[ 0 0 0 0 0 0 1 ] |
127 |
32 |
[ 0 0 0 0 0 1 1 ] |
127 |
33 |
[ 0 0 0 0 0 0 1 ] |
127 |
34 |
[ 0 0 0 0 0 1 1 ] |
127 |
35 |
[ 0 0 0 1 1 1 1 ] |
127 |
36 |
[ 0 0 0 0 1 1 1 ] |
127 |
37 |
[ 0 0 1 0 1 1 1 ] |
127 |
38 |
[ 0 0 0 0 1 0 1 ] |
127 |
39 |
[ 0 0 0 1 0 0 1 ] |
127 |
40 |
[ 0 0 0 0 0 0 1 ] |
127 |
41 |
[ 0 0 0 1 1 1 1 ] |
127 |
42 |
[ 0 0 0 1 0 1 0 ] |
127 |
43 |
[ 0 0 0 0 1 1 1 ] |
127 |
44 |
[ 0 0 1 1 1 0 1 ] |
127 |
45 |
[ 0 0 0 0 1 1 1 ] |
127 |
46 |
[ 0 0 0 0 1 1 1 ] |
127 |
47 |
[ 0 0 1 1 0 1 1 ] |
127 |
48 |
[ 0 0 0 1 0 1 1 ] |
127 |
49 |
[ 0 0 1 1 0 0 1 ] |
127 |
50 |
[ 0 0 0 1 0 1 0 ] |
127 |
51 |
[ 0 0 0 1 1 1 1 ] |
127 |
52 |
[ 0 0 0 1 0 1 1 ] |
127 |
53 |
[ 0 0 0 1 1 0 1 ] |
127 |
54 |
[ 0 1 0 1 1 1 1 ] |
127 |
55 |
[ 0 1 0 0 1 1 1 ] |
127 |
56 |
[ 0 0 0 1 1 1 1 ] |
127 |
57 |
[ 0 1 0 1 0 0 1 ] |
127 |
58 |
[ 0 0 1 1 0 1 1 ] |
127 |
59 |
[ 0 0 1 1 0 0 1 ] |
127 |
60 |
[ 0 0 0 0 0 0 1 ] |
127 |
61 |
[ 0 0 1 1 0 1 1 ] |
127 |
62 |
[ 0 0 1 1 0 1 1 ] |
127 |
63 |
[ 0 0 0 0 0 0 1 ] |
127 |
64 |
[ 0 1 0 1 0 0 1 ] |
127 |
65 |
[ 0 0 0 1 1 0 1 ] |
127 |
66 |
[ 0 0 0 0 1 0 1 ] |
127 |
67 |
[ 0 0 0 0 1 1 0 ] |
127 |
68 |
[ 0 0 0 0 1 1 0 ] |
127 |
69 |
[ 0 0 0 0 0 0 1 ] |
127 |
70 |
[ 0 0 0 0 0 0 1 ] |
127 |
71 |
[ 0 0 0 1 0 0 1 ] |
127 |
72 |
[ 0 0 0 1 1 1 1 ] |
127 |
73 |
[ 0 0 0 0 1 0 1 ] |
127 |
74 |
[ 0 0 0 1 0 0 1 ] |
127 |
75 |
[ 0 0 0 0 0 0 1 ] |
127 |
76 |
[ 0 0 0 0 0 0 1 ] |
127 |
77 |
[ 0 0 1 1 1 1 1 ] |
127 |
78 |
[ 0 0 0 1 1 1 0 ] |
127 |
79 |
[ 0 0 1 1 1 1 1 ] |
127 |
80 |
[ 0 0 0 0 0 0 1 ] |
127 |
81 |
[ 0 0 0 1 1 1 1 ] |
127 |
82 |
[ 0 1 0 1 0 1 1 ] |
127 |
83 |
[ 0 0 0 0 0 1 1 ] |
127 |
84 |
[ 0 0 0 0 1 0 1 ] |
127 |
85 |
[ 0 0 1 1 1 1 1 ] |
127 |
86 |
[ 0 0 1 0 1 1 1 ] |
127 |
87 |
[ 0 0 0 0 1 0 1 ] |
127 |
88 |
[ 0 0 0 0 0 1 1 ] |
127 |
89 |
[ 0 0 0 1 1 1 1 ] |
127 |
90 |
[ 0 0 0 0 0 0 1 ] |
127 |
91 |
[ 0 0 0 0 0 0 1 ] |
127 |
92 |
[ 0 0 0 0 0 1 0 ] |
127 |
Solutions for lambda = 3
number of
solutions: 100
Solutions for lambda = 4
number of
solutions: 3899
2001-10-05