Classification of linear codes over a chain ring with 4 elements up to linear isometry
We used our program for the canonization of linear codes and a canonical augmentation approach in order to classify nonredundant linear codes
of small parameters k0+k1 ≤ n up to linear isometry.
The isometry classes are further distinguished by the minimum Lee distance. An entry
of the table tells you that there are x isometry classes of linear codes with minimum Lee distance i and parameters k0, k1 and n.
R = Z4:
(k0,k1) | n=3 | n=4 | n=5 | n=6 | n=7 | n=8 | n=9 | n=10 |
---|---|---|---|---|---|---|---|---|
(1, 0) | 213141 | 214251 | 21415162 | 2141627181 | 214161718291 | 2141618291102 | 2141618191102111 121 | 21416181102111 122 131 |
(2, 0) | 1223 | 132133141 | 1423035410 | 152583104435461 | 1621003144101523612 | 17216131841965506727484 | 18224532243335756202731835 | 192358326452859964037848162914101 |
(1, 1) | 1126 | 112113144 | 112163241351 | 11221324255465 | 1122732436566197181 | 11233324485763574812 | 1124032460576527783294101 | 112473247457667798589101015 |
(0, 2) | 2141 | 2142 | 214261 | 21426281 | 21426282 | 21426283101 | 21426283102121 | 21426283103122 |
(3, 0) | 11 | 1524 | 11824431 | 1492283327422 | 112121275318443705461 | 1256247053699429735238623 | 15122151863200541520052760612127481 | 19512445003478245994451370361686677628204 |
(2, 1) | 1221 | 17216 | 1172963444 | 1332349332485 | 15829853108455351965 | 193223823246422225242613381 | 114225231347046630599861435730825 | 12062106543798416663525656714175578569 |
(1, 2) | 1122 | 1221341 | 132403249 | 142863645251 | 162162311416059611 | 17227631643755316767184 | 19244232447245636294712836 | 11126753304126851046738750821593101 |
(0, 3) | 21 | 2241 | 2343 | 244761 | 264116381 | 274176783 | 2942261588 | 211429621819102 |
(4, 0) | 11 | 1925 | 163211531 | 138121718388428 | 1195521929232340423025261 | 18894217410032773047012552151629 | 13688021358596321120441153871517665762112681 | |
(3, 1) | 1321 | 123232 | 112124543844 | 14992412532734287 | 11728227552329394737653564 | 153192150678317672492804549616608 | 114961271951637711547593315103793652539786819 | |
(2, 2) | 1323 | 116251 | 1542412312422 | 11492216831404439 | 135928839371744426564614 | 1786230649325054276295164669637181 | 1160429505836990412799351264961877071928153 | |
(1, 3) | 1123 | 1322541 | 16210433421 | 112232131541535161 | 1212834341473551761981 | 1342193839442574511062787286 | 154241593181474105409618637398117 | |
(0, 4) | 21 | 2341 | 2645 | 21241461 | 2214376481 | 23447761984 | 2544146657819 | |
(5, 0) | 11 | 11426 | 11792250 | 12215284093201428 | 1258922237657324886411592 | 1283029257964003106549141684148518947611 |
For k0+k1&le 4: We calculated 5944677 nonisomorphic linear codes (using 17164860 calls of our algorithm). This table was produced in 420 minutes.
For the row (5,0) we started the classification of free submodules from the beginning. We calculated 12622568 nonisomorphic linear codes (using 58810334 calls of our algorithm). This table was produced in 2000 minutes.
R = F2[X] / (X2) :
(k0,k1) | n=3 | n=4 | n=5 | n=6 | n=7 | n=8 | n=9 | n=10 |
---|---|---|---|---|---|---|---|---|
(1, 0) | 213141 | 2142 51 | 2141 5162 | 2141 627181 | 2141 61 718291 | 2141 61 8291102 | 2141 61 8191102111 121 | 2141 61 81102111 122 131 |
(2, 0) | 1223 | 132133141 | 1423035410 | 152583104435461 | 1621003144101523612 | 17216131841965506727484 | 18224532243335756202731835 | 192358326452859964037848162914101 |
(1, 1) | 1126 | 112113144 | 112163241351 | 11221324255465 | 1122732436566197181 | 11233324485763574812 | 1124032460576527783294101 | 112473247457667798589101015 |
(0, 2) | 2141 | 2142 | 214261 | 21426281 | 21426282 | 21426283101 | 21426283102121 | 21426283103122 |
(3, 0) | 11 | 1524 | 11824431 | 1492283327422 | 1121212753184437154 | 1256247053699429755238621 | 15122151863200541520752761612037482 | 19512445003478245995651370661685077628205 |
(2, 1) | 1221 | 17216 | 1172963444 | 1332349332485 | 15829853108455351965 | 193223823246422225242613381 | 114225231347046630599861435730825 | 12062106543798416663525656714175578569 |
(1, 2) | 1122 | 1221341 | 132403249 | 142863645251 | 162162311416059611 | 17227631643755316767184 | 19244232447245636294712836 | 11126753304126851046738750821593101 |
(0, 3) | 21 | 2241 | 2343 | 244761 | 264116381 | 274176783 | 2942261588 | 211429621819102 |
(4, 0) | 11 | 1925 | 163211531 | 138121718389427 | 11955219292323444230451 | 18894217410032774247017452135620 | 1368802135859632112334115425951766596209257182 | |
(3, 1) | 1321 | 123232 | 112124543844 | 14992412532734287 | 11728227552329394737953462 | 153192150678317672492825549626586 | 114961271951637711547594275103829652403786823 | |
(2, 2) | 1323 | 116251 | 1542412312422 | 11492216831404439 | 135928839371744426564614 | 1786230649325054276295164669637181 | 1160429505836990412799351264961877071928153 | |
(1, 3) | 1123 | 1322541 | 16210433421 | 112232131541535161 | 1212834341473551761981 | 1342193839442574511062787286 | 154241593181474105409618637398117 | |
(0, 4) | 21 | 2341 | 2645 | 21241461 | 2214376481 | 23447761984 | 2544146657819 |
We calculated 5944937 nonisomorphic linear codes (using 17134160 calls of our algorithm). This table was produced in 380 minutes.
The Gray images
Using the Gray map we get binary blockcodes with 22k0 + k1 Elements of length n' = 2*n. The following tables shows the minimum Hamming distance of these codes (compared to the best known linear binary codes with the same parameters).
The following tables are not complete for those k, where k = 2*k0 + k1 and (k0 , k1) is missing in the table above.
R = Z4:
k | n'=6 | n'=8 | n'=10 | n'=12 | n'=14 | n'=16 | n'=18 | n'=20 |
---|---|---|---|---|---|---|---|---|
2 | 4(4) | 5(5) | 6(6) | 8(8) | 9(9) | 10(10) | 12(12) | 13(13) |
3 | 2(3) | 4(4) | 5(5) | 6(6) | 8(8) | 8(8) | 10(10) | 10(11) |
4 | 2(2) | 4(4) | 4(4) | 6(6) | 6(7) | 8(8) | 8(8) | 10(10) |
5 | 2(2) | 2(2) | 4(4) | 4(4) | 6(6) | 8(8) | 8(8) | 8(9) |
6 | 1(1) | 2(2) | 3(3) | 4(4) | 6(5) | 6(6) | 8(8) | 8(8) |
7 | 2(2) | 2(2) | 4(4) | 4(4) | 6(6) | 6(7) | 8(8) | |
8 | 1(1) | 2(2) | 3(3) | 4(4) | 6(5) | 6(6) | 8(8) | |
10 | 1(1) | 2(2) | 2(3) | 4(4) | 4(4) | 6(6) |
R = F2[X] / (X2) :
k | n'=6 | n'=8 | n'=10 | n'=12 | n'=14 | n'=16 | n'=18 | n'=20 |
---|---|---|---|---|---|---|---|---|
2 | 4(4) | 5(5) | 6(6) | 8(8) | 9(9) | 10(10) | 12(12) | 13(13) |
3 | 2(3) | 4(4) | 5(5) | 6(6) | 8(8) | 8(8) | 10(10) | 10(11) |
4 | 2(2) | 4(4) | 4(4) | 6(6) | 6(7) | 8(8) | 8(8) | 10(10) |
5 | 2(2) | 2(2) | 4(4) | 4(4) | 6(6) | 8(8) | 8(8) | 8(9) |
6 | 1(1) | 2(2) | 3(3) | 4(4) | 5(5) | 6(6) | 8(8) | 8(8) |
7 | 2(2) | 2(2) | 4(4) | 4(4) | 6(6) | 6(7) | 8(8) | |
8 | 1(1) | 2(2) | 3(3) | 4(4) | 5(5) | 6(6) | 8(8) |