´

new codes from 011008

  • binary:
  • ternary: 3 improvements + 5 derived
  • q=4: 1 improvement +1 derived
  • q=5: 1 optimal + 3 improvement + 5 derived
  • q=7:
  • q=8: 1 improvment + 5 derived
  • q=9:

binary q=2

ternary q=3

q=3 k=7 n=159 d=101 
(extension of a code with automorphisms)
( link )

generator matrix:
 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111100000000000000000000000000000000001
000122220001222201111122011111220001222200001122000011221111222200120000112200012222000111120001111200001122011111220000112211000111110001111100001111000011110
000211110220012200011202000112020111001200120102011211120011011200210122000111200011000222210120011111121201100122000112020022011001120110011211110122011111120
012100021021121101201101112000110020011202110011002212200211002012120012022202001102012000120200201102202120002102220120110102111022221021122201122002100111201
001201200121000211110002002021220020011202201202021020221102020012121121222112120111020012012101222211200011110002112212121102100210022000202120120220100111201
020002111100220012202020021101012011002011121000100110121102020012120012022210210002001021200112112100111021101011020120110102001201202111021120120220212212221
110010122022002122021212201102000222002112221220210002012200122000120000112220220210202220102020221012002010002120100000112211121011002100120211112011022222210
mindist=101
weight enumerator=1 [0]  428 [101]  404 [102]  144 [103]  160 [104]  146 [105]  246 [106
]  32 [107]  24 [108]  200 [110]  84 [111]  36 [112]  88 [113]  12 [114
]  12 [115]  2 [116]  2 [117]  56 [119]  52 [120]  36 [121]  4 [122]  4
 [123]  12 [124]  2 [125]
q=3 k=7 n=164 d=105 
(extension of a code with  automorphisms)
( link )


generator matrix:
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110000000000000000000000000000000011
00012222000122220111112201111122000122220000112200001122111122220200001122000122220001111200012222000111120000112201111122000011220001111100011111000011110000111111
00021111022001220001120200011202011100120012010201121112001101120101220001112000110002222111200011012001111112120110012200011202000110011201100112111101220111111222
01210002102112110120110111200011002001120211001100221220021100202200120222020011020120001212202212020020110220212000210222012011011110222210211222011220021001112002
00120120012100021111000200202122002001120220120202102022110202002211212221121201110200120121200100210122221120001111000211221212111002100220002021201202201001112002
02000211110022001220202002110101201100201112100010011012110202002200120222102100020010212020111112011211210011102110101102012011010012012021110211201202202122122202
11001012202200212202121220110200022200211222122021000201220012200200001122202202102022201021011001202022101200201000212010000011221210110021001202111120110222222111
mindist=105
weight enumerator=1 [0]  546 [105]  390 [106]  390 [107]  210 [108]  368 [114]  48 [115]  
48 [116]  16 [117]  56 [123]  48 [124]  48 [125]  16 [126]  2 [132]  
q=3 k=10 n=191 d=114 
(using automorphisms)
( link )

it is a [191,10,114] code with group 79738 
generator matrix:
00000000111111111111111100000000111111111111111100000000111111111111111100011111111100111111000000000111111111111111000001111111111111111111000000001111111111111111000000000001111111111111111
00111111000111122222222200000111000000111111122200011111000000001112222201100112222201012222001111111011111111112222111110011111122222222222000001110000001111111222000000011110000111112222111
01000122012000000111122201111122001222001112212201101122000112220120012201212120022211020122110001112201111122220012000020200222200001122222001110020111220011122011001111101220002011120111221
11012101102022202000222210112112011112110120021211200112012020022220220210001100101211102112011120022200011200120222011202122011211220101111110120020012021201112012010011201011220022221011011
12111101220101221222100102221110022221111220220211011121202200222210221200210211122202201122000121220020211122121000122102112011200111120111000120211210212120210220101200020202002201210012211
02000001011001220012212020012112021122012220202220222101101011102122101110012211220101110210110210020012200000122002222011101011001220010022022211020022221220210212011202002202000002222200010
01021010202220222121020211121121120001112120210211012012201200110020212200212111022220200020000211021202200012112110112222221012111001202022220120122211100220112112020020100001022210122201221
00221101212102000201120101200201102011010221201111012010200101112201200212201021220120201202111120120200001120202101122000020000022221002011211220120201202021102221222201221000001020022212200
12121010012110202100101201120001122002001120021022020111222001110012101011001112120122010211210222211000222111102102121110120121001120100011000002110112211201111102010001122111222012210010112
20120020022102001200110001222012102202100122112100210220002110002011022001120101222221011112211220100110201020010211211200220210002121020012110002102222112012020001000101021112110220020122210
corresponding to the solution:
[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0
,0]
mindist=114
weight enumerator=1 [0]  1976 [114]  3476 [117]  6288 [120]  8104 [123]  10320 [126]  10014
 [129]  8120 [132]  6096 [135]  2880 [138]  1560 [141]  98 [144]  96 [147
]  4 [150]  16 [153]  

q=4

q=4 k=8 n=145 d=98 
(using automorphisms)
( link )

it is a [145,8,98] code with group 125582 
generator matrix:
[[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:
[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:
[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]]
[[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:
[0,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:
[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:
[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:
[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:
[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,0]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:
[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[0,0]:[0,0]:
[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:
[1,1]]
[[1,0]:[1,0]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,0]:
[1,0]:[1,0]:[1,1]:[1,1]:[0,0]:[0,1]:[1,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:
[1,1]:[0,0]:[0,1]:[1,0]:[1,0]:[1,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:
[1,1]:[0,1]:[0,0]:[0,1]:[0,1]:[1,1]:[1,1]:[1,0]:[1,1]:[0,0]:[0,0]:[0,0]:
[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,1]:[1,1]:[0,1]:[1,1]:[1,1]:
[0,1]:[0,1]:[1,1]:[1,0]:[1,1]:[1,1]:[1,1]:[0,1]:[0,1]:[1,1]:[0,0]:[1,1]:
[1,0]:[1,1]:[0,0]:[0,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[0,0]:[0,0]:[1,0]:[1,0]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[1,1]:[1,1]:[0,0]:
[0,1]:[0,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[1,1]:[1,1]:[0,0]:
[0,1]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,0]:[0,0]:[1,1]:[0,0]:[0,0]:[1,1]:
[1,0]:[1,1]:[0,1]:[1,0]:[1,0]:[1,1]:[0,0]:[1,1]:[0,1]:[1,0]:[1,1]:[1,1]:
[0,0]:[0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:
[1,0]]
[[1,0]:[1,1]:[1,1]:[1,0]:[0,1]:[1,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:
[0,0]:[1,0]:[1,1]:[1,1]:[0,1]:[1,0]:[0,1]:[1,0]:[1,1]:[1,1]:[1,0]:[1,0]:
[0,1]:[1,1]:[1,1]:[0,0]:[1,0]:[1,1]:[0,0]:[0,1]:[1,1]:[0,0]:[0,0]:[1,1]:
[1,1]:[1,1]:[1,0]:[1,1]:[1,1]:[0,0]:[1,1]:[1,0]:[1,0]:[1,1]:[1,0]:[1,1]:
[1,1]:[1,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,1]:[1,0]:
[1,1]:[0,1]:[0,0]:[0,1]:[0,1]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,1]:
[0,1]:[0,1]:[1,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:
[0,1]:[1,1]:[0,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,0]:[1,0]:[0,1]:[1,0]:[1,1]:[1,1]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,0]:
[0,0]:[1,0]:[0,0]:[1,1]:[0,1]:[0,0]:[1,0]:[1,1]:[0,0]:[0,1]:[1,0]:[1,0]:
[0,0]:[1,1]:[0,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,0]:[0,0]:[1,0]:[0,1]:[1,0]:
[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,0]:[1,1]:
[0,0]]
[[0,0]:[0,1]:[0,1]:[1,0]:[0,0]:[1,1]:[0,1]:[1,1]:[0,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[0,0]:[1,0]:[0,0]:[1,0]:[0,0]:[1,1]:[1,0]:[1,1]:[1,1]:[0,1]:[1,1]:
[1,1]:[1,0]:[1,0]:[1,0]:[1,1]:[1,0]:[1,0]:[0,0]:[1,0]:[0,0]:[1,0]:[0,1]:
[1,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,0]:[1,1]:[0,0]:
[1,0]:[1,1]:[0,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,0]:[0,0]:
[1,1]:[0,0]:[0,1]:[1,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]:[1,1]:[1,0]:[1,1]:
[0,0]:[1,0]:[1,0]:[0,1]:[0,1]:[1,1]:[0,0]:[1,1]:[0,1]:[0,0]:[0,1]:[1,1]:
[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,0]:[0,0]:
[0,1]:[0,0]:[0,1]:[1,1]:[0,0]:[0,1]:[0,0]:[0,0]:[0,1]:[0,0]:[1,1]:[1,0]:
[0,1]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[0,1]:[0,1]:[0,0]:[1,1]:[0,0]:[1,0]:
[1,1]:[0,0]:[1,0]:[1,0]:[0,1]:[0,0]:[1,0]:[0,1]:[0,0]:[0,1]:[0,0]:[1,1]:
[1,1]:[0,1]:[0,0]:[1,0]:[0,1]:[1,0]:[1,1]:[1,1]:[0,0]:[0,1]:[1,1]:[0,1]:
[1,1]]
[[0,1]:[1,0]:[1,1]:[0,1]:[1,0]:[0,1]:[1,1]:[0,0]:[0,0]:[0,1]:[1,1]:[1,1]:
[0,1]:[0,0]:[0,1]:[1,0]:[0,0]:[0,0]:[1,0]:[0,1]:[0,0]:[0,0]:[0,0]:[0,0]:
[1,1]:[0,1]:[1,1]:[1,1]:[0,1]:[0,1]:[0,0]:[1,0]:[0,1]:[0,1]:[0,1]:[0,0]:
[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[0,1]:[1,0]:[0,0]:[1,0]:
[0,1]:[0,1]:[1,0]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[0,1]:[1,1]:[1,1]:[1,0]:
[1,1]:[0,1]:[0,1]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[1,1]:[1,1]:[0,0]:[0,1]:
[0,1]:[0,0]:[1,1]:[1,0]:[0,1]:[1,0]:[0,0]:[1,0]:[0,0]:[1,0]:[0,1]:[0,0]:
[0,1]:[1,1]:[1,0]:[1,1]:[1,1]:[0,1]:[1,1]:[1,1]:[1,0]:[0,1]:[0,1]:[1,1]:
[1,0]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]:[1,0]:[1,0]:[1,0]:[0,1]:[1,1]:[0,1]:
[0,0]:[0,0]:[1,1]:[1,1]:[0,1]:[1,1]:[1,0]:[1,1]:[0,1]:[0,0]:[1,1]:[0,1]:
[1,1]:[1,0]:[1,0]:[0,1]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[1,0]:[1,0]:[1,1]:
[1,1]:[0,0]:[1,1]:[0,0]:[0,0]:[1,1]:[1,0]:[0,0]:[1,0]:[0,0]:[1,0]:[1,0]:
[1,1]]
[[1,0]:[1,0]:[0,0]:[1,0]:[1,0]:[0,0]:[1,1]:[1,1]:[1,0]:[1,1]:[1,0]:[0,0]:
[1,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,0]:
[1,1]:[0,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,0]:[0,0]:[0,0]:[1,0]:[1,1]:[0,0]:
[0,1]:[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,1]:
[1,1]:[0,1]:[0,0]:[1,1]:[0,0]:[0,1]:[1,0]:[1,1]:[1,1]:[0,1]:[1,0]:[0,0]:
[0,0]:[0,0]:[0,1]:[0,0]:[0,1]:[0,1]:[0,0]:[0,0]:[0,1]:[1,1]:[0,1]:[1,0]:
[1,1]:[1,0]:[0,1]:[0,1]:[1,1]:[1,1]:[0,1]:[1,0]:[0,0]:[1,1]:[0,0]:[0,1]:
[0,0]:[0,1]:[1,1]:[1,1]:[1,1]:[1,0]:[0,1]:[0,1]:[1,1]:[0,1]:[0,0]:[0,1]:
[1,1]:[0,0]:[0,0]:[1,1]:[0,0]:[0,1]:[1,1]:[1,0]:[1,1]:[0,0]:[0,1]:[0,0]:
[0,0]:[1,1]:[1,1]:[1,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,1]:[0,1]:
[1,1]:[1,0]:[0,0]:[1,1]:[1,1]:[1,0]:[1,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:
[0,0]:[0,0]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,0]:[0,1]:
[0,1]]
[[1,1]:[1,1]:[0,1]:[0,1]:[0,0]:[0,1]:[0,0]:[1,1]:[0,1]:[0,0]:[1,0]:[0,0]:
[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[0,1]:[1,0]:[1,1]:[1,0]:[0,0]:[1,1]:[0,1]:
[1,1]:[1,1]:[0,1]:[0,0]:[0,1]:[0,1]:[1,1]:[0,1]:[1,0]:[1,1]:[0,0]:[1,1]:
[1,0]:[1,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[1,0]:[0,0]:[0,0]:[0,1]:[0,1]:
[0,1]:[0,1]:[1,0]:[0,1]:[0,1]:[0,0]:[1,0]:[0,1]:[1,0]:[0,0]:[0,1]:[1,0]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[1,1]:
[1,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[1,0]:[0,1]:[1,0]:
[0,0]:[1,1]:[1,0]:[0,0]:[1,1]:[0,0]:[0,1]:[0,0]:[1,0]:[1,0]:[0,1]:[0,1]:
[1,0]:[1,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:
[1,1]:[0,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,1]:[1,1]:[0,0]:[0,1]:
[0,1]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[0,1]:[1,1]:[1,0]:[0,0]:[0,1]:[0,1]:
[0,0]:[0,1]:[1,0]:[0,0]:[0,1]:[1,1]:[0,1]:[1,1]:[0,1]:[0,1]:[1,0]:[0,0]:
[0,1]]

corresponding to the solution:
[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=98
weight enumerator=1 [0]  1725 [98]  3120 [100]  4995 [102]  6660 [104]  8100 [106]  9270
 [108]  8295 [110]  9585 [112]  5565 [114]  4920 [116]  1905 [118]  1170
 [120]  90 [122]  90 [124]  45 [126]  

q=5

q=5 k=6 n=53 d=37 
(using automorphisms)
( link )

code with group 34682 
generator matrix:
00000100111101111111111101111101111101111101100111101
00001001011410124412333410334410223310122310311002210
00010014001423430431234344041231011123012132002220401
00100044400431032141441411203113220311320101124044010
01000044140034224013222434314031101123121010340430301
10000040114024401324231242240413223021302332033303010
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]
mindist=37
weight enumerator=1 [0]  744 [37]  960 [38]  1308 [39]  1292 [40]  1608 [41]  1800 [42]  
2124 [43]  1816 [44]  1524 [45]  1272 [46]  696 [47]  336 [48]  96 [49
]  48 [50]  

q=5 k=7 n=36 d=24 optimal
(using automorphisms)
( link )

code with group 127082 
generator matrix:

000000111111111111111111111111111110
000001011344140023440022340122331221
000010114024142301012301304203233344
000100421104411021303130022240333434
001000103144414340020043223231201221
010000110442410113203203103322043344
100000241140143100121320033032423434
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0]
mindist=24
weight enumerator=1 [0]  4284 [24]  3024 [25]  14616 [26]  24192 [29]  12600 [30]  16128
 [31]  3024 [34]  256 [36]  

q=5 k=7 n=39 d=25 
(extension of a code with automorphisms computed by a program of Johannes Zwanzger)
( link )

generator matrix:
000000111111111111111111111111111110011
000001011344140023440022340122331221034
000010114024142301012301304203233344103
000100421104411021303130022240333434022
001000103144414340020043223231201221111
010000110442410113203203103322043344121
100000241140143100121320033032423434242
mindist=25
weight enumerator=1 [0]  296 [25]  2200 [26]  5108 [27]  6836 [28]  7696 [29]  2428 [30]  
10652 [31]  18496 [32]  12880 [33]  8280 [34]  300 [35]  1148 [36]  1596
 [37]  84 [38]  124 [39]  
q=5 k=7 n=81 d=57
(using automorphisms)
( link )

code with group 77869 
generator matrix:
000000001111111111110000111111111111111101111111111111111111000001111111111111111
000011110000122233441111000111111222334410001111112222233444111110001111233334440
011101140134323413241233223012344024140401110124440123422124113330042223401241230
011310114134330041131302142314002322401320341123344034001433110123310342440022140
001043201000031033302131441244334432221112040203431003244232112313341414131341430
003321422000413241423424111201320122000112424120203213100032022301332304202032410
121243231331131333334342324333213243442424232413332131444214441444413242324214240
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
mindist=57
weight enumerator=1 [0]  1760 [57]  2800 [58]  2320 [59]  2608 [60]  4520 [61]  7120 [62
]  7120 [63]  7580 [64]  7444 [65]  6560 [66]  10080 [67]  7360 [68]  4280
 [69]  2560 [70]  1920 [71]  1040 [72]  720 [73]  320 [74]  12 [80]  

q=7

q=8

q=8 k=5 n=90 d=74 
(using automorphisms)
( link )

it is a code with group 59688 
generator matrix:

[[0,0,0]:[0,0,0]:[0,0,0]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[0,0,0]:[0,0,0]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[0,0,0]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[0,0,0]:[0,0,0]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[0,0,0]:[0,0,0]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]
]
[[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[0,0,0]:[0,0,0]:[0,0,0]:[0,0,1]:[0,0,1]:
[0,1,0]:[0,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[1,1,1]:[1,1,1]:
[0,0,0]:[0,0,0]:[0,0,0]:[0,0,1]:[0,1,0]:[0,1,1]:[1,0,0]:[1,0,1]:[1,1,0]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[0,0,0]:[0,0,1]:[0,0,1]:[0,0,1]:
[0,0,1]:[0,1,0]:[0,1,0]:[1,0,0]:[1,0,0]:[1,1,0]:[1,1,0]:[1,1,1]:[1,1,1]:
[0,0,0]:[0,0,0]:[0,0,1]:[0,1,0]:[0,1,1]:[0,1,1]:[0,1,1]:[1,0,0]:[1,0,0]:
[1,0,0]:[1,0,1]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[0,0,1]:[0,0,1]:[0,1,0]:[0,1,0]:[0,1,1]:[0,1,1]:[1,0,0]:[1,0,0]:[1,0,1]:
[1,0,1]:[1,1,0]:[1,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,1]:[0,0,1]:[1,0,0]:
[1,0,0]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]
]
[[0,0,1]:[0,1,0]:[1,1,0]:[0,0,0]:[0,1,1]:[1,0,1]:[1,1,1]:[0,0,0]:[1,1,1]:
[0,0,0]:[1,0,1]:[0,0,0]:[0,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,0]:[1,1,1]:
[0,1,0]:[1,0,0]:[1,1,1]:[0,0,0]:[0,0,0]:[0,0,0]:[1,1,1]:[1,0,1]:[0,0,1]:
[0,1,1]:[1,1,0]:[1,1,1]:[0,0,1]:[0,0,0]:[1,1,0]:[0,1,0]:[0,1,0]:[1,0,0]:
[1,1,1]:[0,1,1]:[1,1,0]:[0,1,0]:[1,1,1]:[0,1,0]:[1,0,0]:[0,0,0]:[0,1,1]:
[1,1,1]:[1,0,1]:[0,1,0]:[0,1,0]:[0,0,1]:[0,1,0]:[0,1,0]:[0,0,0]:[0,1,1]:
[1,1,1]:[0,0,1]:[0,0,0]:[1,0,1]:[1,1,1]:[0,1,1]:[0,1,0]:[0,1,1]:[1,1,1]:
[0,1,0]:[1,0,0]:[0,0,1]:[1,0,0]:[0,0,1]:[1,0,1]:[0,1,1]:[1,1,0]:[0,1,0]:
[1,0,1]:[0,1,1]:[1,1,0]:[0,1,1]:[1,0,0]:[1,0,1]:[1,0,0]:[1,1,0]:[0,1,0]:
[1,0,0]:[0,1,0]:[0,1,0]:[1,0,0]:[1,0,1]:[0,1,0]:[1,0,0]:[1,0,1]:[1,1,0]
]
[[1,1,0]:[0,0,0]:[1,1,0]:[0,0,0]:[1,0,0]:[0,0,0]:[1,0,0]:[1,1,1]:[1,1,1]:
[0,1,0]:[0,1,0]:[0,0,1]:[0,1,1]:[0,0,1]:[0,1,1]:[1,0,0]:[0,1,1]:[0,1,0]:
[0,1,0]:[0,1,1]:[0,0,0]:[0,0,1]:[0,0,0]:[0,0,0]:[1,1,1]:[1,1,1]:[1,1,0]:
[1,0,0]:[1,1,1]:[1,0,1]:[0,0,1]:[1,1,0]:[0,1,0]:[0,0,1]:[0,1,0]:[1,0,1]:
[1,0,0]:[1,0,0]:[0,1,0]:[0,0,0]:[1,1,0]:[0,1,1]:[1,1,1]:[1,0,0]:[1,1,0]:
[0,1,1]:[1,1,0]:[1,1,1]:[0,1,1]:[0,0,1]:[0,0,0]:[0,1,1]:[1,0,1]:[0,0,1]:
[1,0,0]:[0,0,1]:[0,1,1]:[0,1,0]:[1,0,0]:[1,0,0]:[1,1,0]:[1,0,1]:[0,1,0]:
[0,0,0]:[0,1,0]:[0,1,1]:[1,1,0]:[0,0,0]:[1,1,1]:[0,0,0]:[1,1,1]:[0,0,1]:
[1,0,0]:[1,0,1]:[1,1,1]:[0,0,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,0,0]:
[0,0,0]:[0,0,1]:[1,0,0]:[0,0,1]:[1,0,0]:[1,1,1]:[1,0,1]:[1,1,1]:[1,0,1]
]
[[0,0,1]:[1,1,1]:[0,0,0]:[1,0,1]:[1,0,0]:[0,1,0]:[1,1,1]:[0,0,0]:[0,0,1]:
[0,1,0]:[1,0,1]:[0,0,1]:[1,1,1]:[0,0,0]:[1,0,0]:[1,1,1]:[1,0,0]:[1,1,1]:
[0,0,0]:[1,0,0]:[0,0,1]:[1,1,0]:[1,1,1]:[0,0,0]:[0,1,1]:[0,1,0]:[0,0,0]:
[1,1,1]:[1,1,1]:[1,0,1]:[1,0,0]:[0,1,1]:[0,1,0]:[0,1,1]:[1,0,0]:[0,1,1]:
[1,1,1]:[1,0,1]:[0,0,1]:[1,0,0]:[0,0,1]:[1,1,0]:[1,0,0]:[0,0,1]:[0,0,0]:
[0,0,1]:[0,0,0]:[1,0,1]:[0,1,0]:[1,1,0]:[0,1,0]:[1,1,1]:[0,0,1]:[1,0,1]:
[0,0,1]:[0,1,0]:[0,0,1]:[0,1,1]:[1,0,0]:[1,0,1]:[1,0,1]:[0,0,1]:[0,0,1]:
[1,1,1]:[1,0,1]:[0,0,0]:[0,0,1]:[0,0,0]:[1,1,1]:[1,1,0]:[0,1,0]:[0,0,0]:
[1,0,0]:[1,1,1]:[0,1,1]:[0,1,0]:[0,0,0]:[0,1,1]:[0,1,0]:[1,1,1]:[0,0,1]:
[1,1,0]:[1,1,0]:[1,0,0]:[0,0,1]:[0,0,0]:[0,0,0]:[1,1,1]:[1,0,0]:[0,1,0]
]

corresponding to the solution:
[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=74
weight enumerator=1 [0]  3465 [74]  8820 [76]  4410 [78]  7875 [80]  5040 [82]  2520 [84
]  630 [86]  7 [90]  

q=9

University of Bayreuth -