´

new codes from 051108

  • binary: 1 improvement +1 derived
  • ternary: 1 optimal + 8 improvement + 25 derived
  • q=4:
  • q=5:
  • q=7:
  • q=8: 1 improvement + 1 derived
  • q=9:

binary q=2

q=2 k=13 n=141 d=62
(using program by Johannes Zwanzger)
( link )

generator matrix:
000000000000111111111111111111000000000000000000111111111111000000000000000011111111111111000000000000000000001111111111000000000111111000011
000000111111000000111111111111000011111111111111000000111111000000001111111100000000111111000000000011111111110011111111000000111000111011000
000011001111111111000001111111000000001111111111000011001111001111110000111100000011000111000000011100000001110100001111000011011111011001010
000000010111000011011110001111011100110000011111011100000111110000110001011100011101001001000011101100001110111000110001011101001011111011000
011101110011111100111110111111101101000001100011000111011111010111000110100100100100111011011101110001110010001101010010100100111001100100100
000100101111000100100111110001010101010010001101011101100111101001111010001011001011111011100100001100010001111110000111001001100101001011000
011011001001011101111110010011010000010100010101000010110001100011010000111101000111010111111100011100000100001000110100010010100011010100001
000010110111001000111010001111001101110110101111101011010010011100001111010011011001011000101000110110010110011001001011001010000010101110011
101110110000000011111110110001111100001000101100110011000101100101010111111001111011100100011010101110110000010010101100001111010000010010111
100010101110101110011100010010001000110000110111110100000100101001011010011010101010001011001111011001111100010000000111010001000100110111100
010110100101010110100100011101101100010100010101000010001110110010000000101100100000011110010000000110100000111110111111101101100011101100111
010001100010110011001001000100010001001011111000101100101001101101000001011101011010010110001101100001111101111110010111011110010011011011110
110110110101001010110100100100011011000001111110100100001111111010001111000001100110010011001000101000110000011001000111001100110000001111111
mindist=62
weight enumerator=1 [0]  1075 [62]  1115 [64]  360 [66]  120 [68]  2040 [70]  1200 [72]  
288 [74]  96 [76]  1230 [78]  500 [80]  120 [82]  40 [84]  7 [94]  

ternary q=3

q=3 k=8 n=39 d=21 optimal
(using automorphisms)
( link )

code with group 818 

generator matrix:
000000000000001111111111111111111110000
000000111111110000122222222111100000000
001111000011111111122220000000022220000
110012112211221122011220012112211220000
220102220212120222002220111011102010011
220120111021001212022022220120011101102
020111002112122001021001020100201110221
021200121200001122012212112221110022002
corresponding to the solution:
[0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,1,0,0,0]
mindist=21
weight enumerator=1 [0]  840 [21]  1940 [24]  2448 [27]  1224 [30]  106 [33]  2 [36]  
q=3 k=8 n=53 d=30
(using automorphisms)
( link )

code with group 637 

generator matrix:
10111111100111111011111110001111100011111000111110111
11011111201011112101222221110001211100012011001221012
11201112212001112222011120022220200211202112012001220
12220112222200112111101212220012011202020120120022201
12122012222120012122222020101110102012201200102210111
12112202222112002220111111110201012120020022201201012
12111222022111200111122202002220220021201212020101220
12111120120111120222220122221002021100120101220012201
corresponding to the solution:
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0]
mindist=30
weight enumerator=1 [0]  1052 [30]  1600 [33]  1970 [36]  1644 [39]  272 [42]  18 [45]  4
 [48]  
q=3 k=8 n=118 d=72
(extension of a code with automorphisms)
( link )

generator matrix:
0000000000111111000000111111111100001111111111110000000011111111000011111111111100001111111111111100000000111111110101
0000000011001122000011001111222200110011111222220000001100111222111100001111222211110000111122221200111111000000121010
0000001112000202001112000112011211120001112011120000111200012012112211220012001211221122001200121111000012001122000201
0000111222000000111222000011002212111200121001220011122200001002121212121200120012121212120012001212002200120000122010
0011122200000000122212220002000211212210012101021112221200000000000011112222222200002222221122111100120012222200000101
1112220000000000221222122000100021111221020121001222120012000000222200001122221111110000222211111212220000000012211010
1222000000220000122200111200120011211112100120102212000011200200221122110012001222111122002100211100001221220011000201
2200000000122010220000121120221021001211201220121200000021120210121221212100210021212121120012001221221100001200002010
mindist=72
weight enumerator=1 [0]  1208 [72]  1332 [75]  1248 [78]  1204 [81]  952 [84]  384 [87]  
196 [90]  32 [93]  4 [99]  
This is a self-orthogonal code
q=3 k=8 n=172 d=108
(extension of a code with automorphisms)
( link )

generator matrix:
0000011111111111000000111111111100000011111111110000001111111111000000111111111100000111111111110000011111111111000011111111111101111111000111111111111100000011111111110101
0001100011222222111111001112222200011100111222220011110001222222001111000111122200111000011122220001100000011222011100011111122200011122011000011111222201111100001122221111
0110101202011222001222011120001201100222011001220100220221001122010111112112202211012011200201120110201222200112000101201112200200101201001011101122001100112200120200000202
0011200112001001021022110010022212201201101010021002012011010112011112022011211200010201012001111010111222201010122210110000102001100022122200220211121111010012011001122020
0210022020100011212102111200212200122112100012021122221021200222020011112001112002122021202021200200101000211202102121111222211212011221002022101212200220210002022121201010
0010212201222002102121010111120010102202201210111202120021002212101012221220220012211201111012202212210022000021121022010011112121112221102002210122101100000200200122001111
0120101012212200222021211102112212112112111001121022201011122200001122210010122121201122102212011001120002221011002101122200202010201022202210000022120001202002002101012121
1220020002220111102101012011102212022101120202201211212211220102201120001102212112112120202100002001101121010110112012010022111121112221000101020000020121211102100020111111
mindist=108
weight enumerator=1 [0]  2532 [108]  3216 [117]  780 [126]  32 [135]  
This is a self-orthogonal code
q=3 k=8 n=213 d=135
(using program by Johannes Zwanzger)
( link )

generator matrix:
000000001111111111111111110000000011111111111111111100000011111111111111111111000000111111111111111111110000000001111111111111111100000000011111111111111111000000001111111111111111110000001111111111111111111111111
001111110000000001111112220001111100000111112222222211111100000011111122222222011111000000000001111122220111111110000011111222222200111111100001111111111222000111110000000011111222221111110000000001111112222222222
010000220111122220001120020110012201222001110012222200002211112200112200011222100122000111122220111222221000011120001200011001122200000111201110001112222122111000120000011200112011110112220000001220111220000122222
020122021002200110120200210010221222002020111120122201120100121102001112212002201202122111202222001011221012211200001001201121201100002012211220020021122000022001010222200201011001220010110001220010112020011222222
001102101020212010112222111112202201120121020221112221200201002202122210220022002122201112210111220212012111201220012200111211012201002212000010100011212101202001120112212112011222121011120221011011112000202011111
020012122202002101001100122112200001021022012022221102020110100021101221100100020022011022220112021110102112110211201000100201202210000002120000201210122121020110200221110002021022022112022021200011112111101211111
102101101100100110002110212220200201222211102202200121122121201222002212100102110010200010012011101021012202201011001100002011020201021201011212221021100010210010020011211001110220021122021120020100020011121211111
221112122112212222222212111212222212111122112121121112111122211112221212112122000000000000000000000000001221122222122211222112222200000000000000000000000000221211222221222212221211211212111121121122112111222210201
mindist=135
weight enumerator=1 [0]  1848 [135]  1326 [138]  156 [141]  1638 [144]  624 [147]  702 [153
]  156 [156]  4 [159]  104 [162]  2 [186]  
This is a self-orthogonal code

q=3 k=8 n=219 d=138
(using automorphisms)
( link )

code with group 954 


generator matrix:
000000001111111111111111000000001111111111111111000000111111111111111111000000111111111111111111000001111111111111111111000001111111111111111111000000111111111111111111000000001111111111111111000000001111111111111111111
001111110000001122222222011111110000011111112222001111000000111111222222011111000011111112222222011110000111111222222222001110000001111111122222000111000001111122222222000000110011112222222222001111110000000111111222120
011111220222220000111122100111120111200112220122110122001112011122001122101122112200011220012222022220011011122001111122111120011220011222200122000002000110111100012222000111222200110000000111110001120000222000022011000
121122020011120012111212111001201012011000122212010001020121102202011222200012020101102110220122001220102012202000001212121220202010101002201112011112012110001222220122011112110212000111122222010110200012002002201000111
011212110200111220001112001120220202200121020002010200211010011211110212000221221011112120200101121122201210122010110001201200010012001010122111111111120221020000112001022002001010122022211002211002221112110220011211012
120122021002101021220021100121202112212020212201100121102110021122200021212112211101201101100222122112212102021200012222100212021022110001111201202011001220211212020011101020122220012211202010010021021220120120220102120
102011021011221012112012011200111221222022002222112011011120201102211210101010120110111021020011000002121001122022122210011212221101211220020101210012202221020201210100220221000122210101102020100211221210222022110011000
100212101212202021011011121220122121022200110222100121210221102200011102000021110100221120000121102210211101202120021022021102112201101022021011010200201122211101010000101111001120002122010200101020202011110211020122012
corresponding to the solution:
[0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0
,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,1,0,0,0,0,0,0,0,1,0]
mindist=138
weight enumerator=1 [0]  1176 [138]  1344 [141]  1290 [144]  594 [147]  552 [150]  528 [153
]  768 [156]  96 [159]  206 [162]  6 [168]  
q=3 k=8 n=223 d=141
(using program by Johannes Zwanzger)
( link )

generator matrix:
0000000011111111111111110000000011111111111111110000001111111111111111110000001111111111111111110000011111111111111111110000011111111111111111110000001111111111111111110000000011111111111111110000000011111111111111110111111
0011111100000011222222220111111100000111111122220011110000001111112222220111110000111111122222220111100001111112222222220011100000011111111222220001110000011111222222220000001100111122222222220011111100000001111112220000120
0111112202222200001111221001111201112001122201221101220011120111220011221011221122000112200122220222200110111220011111221111200112200112222001220000020001101111000122220001112222001100000001111100011200002220000220110000000
1211220200111200121112121110012010120110001222120100010201211022020112222000120201011021102201220012201020122020000012121212202020101010022011120111120121100012222201220111121102120001111222220101102000120020022010001021111
0112121102001112200011120011202202022001210200020102002110100112111102120002212210111121202001011211222012101220101100012012000100120010101221111111111202210200001120010220020010101220222110022110022211121102200112112012012
1201220210021010212200211001212021122120202122011001211021100211222000212121122111012011011002221221122121020212000122221002120210221100011112012020110012202112120200111010201222200122112020100100210212201201202201020000120
1020110210112210121120120112001112212220220022221120110111202011022112101010101201101110210200110000021210011220221222100112122211012112200201012100122022210202012101002202210001222101011020201002112212102220221100110000000
1002121012122020210110111212201221210222001102221001212102211022000111020000211101002211200001211022102111012021200210220211021122011010220210110102002011222111010100001011110011200021220102001010202020111102110201220222012
mindist=141
weight enumerator=1 [0]  1288 [141]  1688 [144]  834 [147]  642 [150]  600 [153]  432 [156
]  768 [159]  110 [162]  192 [165]  2 [168]  4 [171]  
q=3 k=9 n=225 d=141
(using automorphisms)
( link )

code with group 123941 

generator matrix:
000000000000001111111111111111111111111111111111111111110000000000000001111111111111111111111111111111111111111100000000000000000000011111111111111111111111111111111111000000000000000111111111111111111111111111111111111111110
000000011111110000000000000011111111111111222222222222220000111111111110000000000111111111111111112222222222222200000000000111111111100000000001111111111222222222222222000001111111111000000000000011111111111111122222222222220
001111101112220000111222222201111111122222001111111122220111000001112220000001222000000111111122220000111112222200001111111000011122200000111110001112222000000111112222000110000011222000000111222200001111112222200011111222221
010022220110120012012000011210000011200122010011122211221112001221111120112221111111122000112200021222011121112211110000122001200200201112000120121221111000022001220122011220011201012001122002011101110000110001112211122000121
021211222021010222222011122220122202101202011101200100121021012110221210110110002011201001220111221111200210121201220012102220201112111220001221221020012011222222121112100000211000110122202112201201220112000120220202200012221
002000111101122101201201201212001212212122100221100101022202110010120010011022002101112221122101111222102202101222110012000121001102120022022011202000120101012010011211102020011200201201211021121110022022110201021220001022111
022022001211012111222122200021200010220121120020122000122011002110220101211221222102122021120012001001011021000112010211022220101101222220122110110010022201121222100220012020201210222222010020200220112112020220022200210201102
020201112201011102202010001202112211211200100201101000110000021022022021020112022112222102121022221012122212001211122202102201020002012021211010022202100221122022112111012211001021010012011122102012212211222012012000000000101
121121122121220122210200210002220210111121201102221001102221101212022012022002022220022021201011120120111121222011101020122200012002011101110221011111002000221102011100122110222110000211111020011111100211120022212210120111100
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
mindist=141
weight enumerator=1 [0]  4944 [141]  952 [144]  8064 [150]  1008 [153]  4032 [159]  224 [162
]  456 [168]  2 [225]  
q=3 k=9 n=229 d=144
(using program by Johannes Zwanzger)
( link )

generator matrix:
0000000000000011111111111111111111111111111111111111111100000000000000011111111111111111111111111111111111111111000000000000000000000111111111111111111111111111111111110000000000000001111111111111111111111111111111111111111100111
0000000111111100000000000000111111111111112222222222222200001111111111100000000001111111111111111122222222222222000000000001111111111000000000011111111112222222222222220000011111111110000000000000111111111111111222222222222201012
0011111011122200001112222222011111111222220011111111222201110000011122200000012220000001111111222200001111122222000011111110000111222000001111100011122220000001111122220001100000112220000001112222000011111122222000111112222211201
0100222201101200120120000112100000112001220100111222112211120012211111201122211111111220001122000212220111211122111100001220012002002011120001201212211110000220012201220112200112010120011220020111011100001100011122111220001212102
0212112220210102222220111222201222021012020111012001001210210121102212101101100020112010012201112211112002101212012200121022202011121112200012212210200120112222221211121000002110001101222021122012012201120001202202022000122210111
0020001111011221012012012012120012122121221002211001010222021100101200100110220021011122211221011112221022021012221100120001210011021200220220112020001201010120100112111020200112002012012110211211100220221102010212200010221110222
0220220012110121112221222000212000102201211200201220001220110021102201012112212221021220211200120010010110210001120102110222201011012222201221101100100222011212221002200120202012102222220100202002201121120202200222002102011022102
0202011122010111022020100012021122112112001002011010001100000210220220210201120221122221021210222210121222120012111222021022010200020120212110100222021002211220221121110122110010210100120111221020122122112220120120000000001010111
1211211221212201222102002100022202101111212011022210011022211012120220120220020222200220212010111201201111212220111010201222000120020111011102210111110020002211020111001221102221100002111110200111111002111200222122101201111000111
mindist=144
weight enumerator=1 [0]  5896 [144]  9072 [153]  4256 [162]  456 [171]  2 [225]  
This is a self-orthogonal code

q=4

q=5

q=7

q=8

q=8 k=5 n=128 d=106
(using program by Johannes Zwanzger)
( link )

generator matrix:

[[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[0,0,0]:[0,0,0]]
[[0,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:[0,1,0]:[0,1,0]:[0,1,0]:
[0,1,0]:[0,1,0]:[0,1,0]:[0,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:
[1,0,0]:[1,0,0]:[1,0,0]:[1,0,0]:[1,0,0]:[1,0,0]:[1,0,1]:[1,0,1]:[1,0,1]:
[1,0,1]:[1,0,1]:[1,0,1]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,1]:[0,0,1]:[0,0,1]:
[0,0,1]:[0,0,1]:[0,0,1]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:
[0,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:[1,0,0]:[1,0,0]:[1,0,0]:
[1,0,0]:[1,0,0]:[1,0,0]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:
[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[0,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:
[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,1]:[0,1,1]:[0,1,1]:
[0,1,1]:[0,1,1]:[0,1,1]:[1,0,0]:[1,0,0]:[1,0,0]:[1,0,0]:[1,0,0]:[1,0,0]:
[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,1,0]:[1,1,0]:[1,1,0]:
[1,1,0]:[1,1,0]:[1,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,1,1]:[0,0,0]]
[[0,1,1]:[0,1,1]:[0,1,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,0,0]:[1,0,0]:[1,0,0]:
[1,0,1]:[1,0,1]:[1,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:[1,1,0]:[1,1,0]:[1,1,0]:
[0,1,0]:[0,1,0]:[0,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:[0,0,1]:[0,0,1]:[0,0,1]:
[0,1,0]:[0,1,0]:[0,1,0]:[0,1,1]:[0,1,1]:[0,1,1]:[1,1,1]:[1,1,1]:[1,1,1]:
[1,0,0]:[1,0,0]:[1,0,0]:[1,1,0]:[1,1,0]:[1,1,0]:[1,0,0]:[1,0,0]:[1,0,0]:
[1,1,1]:[1,1,1]:[1,1,1]:[0,1,1]:[0,1,1]:[0,1,1]:[1,1,0]:[1,1,0]:[1,1,0]:
[0,1,0]:[0,1,0]:[0,1,0]:[1,0,0]:[1,0,0]:[1,0,0]:[0,0,1]:[0,0,1]:[0,0,1]:
[0,1,1]:[0,1,1]:[0,1,1]:[1,1,0]:[1,1,0]:[1,1,0]:[1,1,1]:[1,1,1]:[1,1,1]:
[0,1,0]:[0,1,0]:[0,1,0]:[1,0,1]:[1,0,1]:[1,0,1]:[0,0,1]:[0,0,1]:[0,0,1]:
[1,0,1]:[1,0,1]:[1,0,1]:[0,1,0]:[0,1,0]:[0,1,0]:[1,1,0]:[1,1,0]:[1,1,0]:
[0,0,1]:[0,0,1]:[0,0,1]:[1,1,1]:[1,1,1]:[1,1,1]:[1,0,1]:[1,0,1]:[1,0,1]:
[1,1,1]:[1,1,1]:[1,1,1]:[1,0,1]:[1,0,1]:[1,0,1]:[1,1,0]:[1,1,0]:[1,1,0]:
[0,1,1]:[0,1,1]:[0,1,1]:[1,0,0]:[1,0,0]:[1,0,0]:[0,0,1]:[0,0,1]:[0,0,1]:
[1,0,0]:[1,0,0]:[1,0,0]:[0,1,0]:[0,1,0]:[0,1,0]:[0,1,1]:[0,1,1]:[0,1,1]:
[1,1,1]:[0,0,0]]
[[0,0,1]:[1,0,0]:[1,0,1]:[0,0,0]:[1,0,1]:[1,0,1]:[0,0,0]:[1,1,0]:[1,1,0]:
[0,0,1]:[1,1,0]:[1,1,1]:[0,0,0]:[0,1,1]:[0,1,1]:[0,1,1]:[1,0,1]:[1,1,0]:
[0,0,1]:[0,1,0]:[0,1,1]:[0,0,0]:[0,0,1]:[0,0,1]:[0,1,0]:[1,0,0]:[1,1,0]:
[0,0,0]:[1,0,0]:[1,0,0]:[0,0,0]:[1,1,1]:[1,1,1]:[0,1,1]:[1,0,0]:[1,1,1]:
[0,1,0]:[1,0,1]:[1,1,1]:[0,0,0]:[0,1,0]:[0,1,0]:[0,0,1]:[0,1,0]:[0,1,1]:
[0,0,0]:[0,1,1]:[0,1,1]:[0,0,0]:[1,0,0]:[1,0,0]:[0,1,1]:[1,0,0]:[1,1,1]:
[0,0,1]:[1,1,0]:[1,1,1]:[0,0,0]:[1,1,1]:[1,1,1]:[0,0,0]:[1,1,0]:[1,1,0]:
[0,1,1]:[1,0,1]:[1,1,0]:[0,0,0]:[1,0,1]:[1,0,1]:[0,1,0]:[1,0,1]:[1,1,1]:
[0,0,0]:[0,1,0]:[0,1,0]:[0,1,0]:[1,0,0]:[1,1,0]:[0,0,1]:[1,0,0]:[1,0,1]:
[0,0,0]:[0,0,1]:[0,0,1]:[0,0,0]:[1,1,0]:[1,1,0]:[0,1,0]:[1,0,0]:[1,1,0]:
[0,0,1]:[0,1,0]:[0,1,1]:[0,0,0]:[0,1,0]:[0,1,0]:[0,0,0]:[1,0,0]:[1,0,0]:
[0,0,1]:[1,0,0]:[1,0,1]:[0,1,0]:[1,0,1]:[1,1,1]:[0,0,0]:[1,1,1]:[1,1,1]:
[0,0,1]:[1,1,0]:[1,1,1]:[0,0,0]:[0,0,1]:[0,0,1]:[0,0,0]:[1,0,1]:[1,0,1]:
[0,1,1]:[1,0,1]:[1,1,0]:[0,1,1]:[1,0,0]:[1,1,1]:[0,0,0]:[0,1,1]:[0,1,1]:
[0,0,0]:[1,1,1]]
[[0,1,1]:[0,1,1]:[0,0,0]:[1,0,0]:[0,1,0]:[1,1,0]:[0,0,1]:[0,1,0]:[0,1,1]:
[1,0,0]:[0,0,0]:[1,0,0]:[1,0,1]:[0,0,1]:[1,0,0]:[0,0,0]:[1,1,1]:[1,1,1]:
[0,0,0]:[1,1,0]:[1,1,0]:[0,1,0]:[1,0,1]:[1,1,1]:[1,0,1]:[0,0,0]:[1,0,1]:
[1,1,0]:[0,0,1]:[1,1,1]:[0,1,1]:[1,0,1]:[1,1,0]:[0,1,0]:[0,1,0]:[0,0,0]:
[0,0,0]:[0,0,1]:[0,0,1]:[1,1,1]:[0,1,1]:[1,0,0]:[0,0,0]:[1,1,0]:[1,1,0]:
[1,0,1]:[0,0,1]:[1,0,0]:[1,1,0]:[0,0,1]:[1,1,1]:[0,1,0]:[0,1,0]:[0,0,0]:
[1,0,0]:[0,0,0]:[1,0,0]:[0,1,1]:[1,0,1]:[1,1,0]:[0,0,1]:[0,1,0]:[0,1,1]:
[0,0,0]:[1,1,1]:[1,1,1]:[1,0,0]:[0,1,0]:[1,1,0]:[0,0,0]:[0,0,1]:[0,0,1]:
[1,1,1]:[0,1,1]:[1,0,0]:[1,0,1]:[0,0,0]:[1,0,1]:[0,1,1]:[0,1,1]:[0,0,0]:
[0,1,0]:[1,0,1]:[1,1,1]:[0,0,1]:[0,1,0]:[0,1,1]:[1,0,1]:[0,0,0]:[1,0,1]:
[0,0,0]:[1,1,0]:[1,1,0]:[1,1,1]:[0,1,1]:[1,0,0]:[1,1,0]:[0,0,1]:[1,1,1]:
[0,1,1]:[0,1,1]:[0,0,0]:[0,0,0]:[0,0,1]:[0,0,1]:[0,1,1]:[1,0,1]:[1,1,0]:
[1,0,0]:[0,0,0]:[1,0,0]:[0,1,0]:[1,0,1]:[1,1,1]:[1,0,0]:[0,1,0]:[1,1,0]:
[0,0,0]:[1,1,1]:[1,1,1]:[0,1,0]:[0,1,0]:[0,0,0]:[1,0,1]:[0,0,1]:[1,0,0]:
[0,0,0]:[1,1,1]]

mindist=106
weight enumerator=1 [0]  3171 [106]  1764 [107]  1617 [108]  392 [109]  6370 [110]  3528
 [111]  1176 [112]  1176 [113]  3724 [114]  4312 [115]  1666 [116]  3822
 [118]  21 [126]  28 [127]  


q=9

University of Bayreuth -