´

new codes from 150908

  • binary: 2 optimal + 1 improvement + 3 derived
  • ternary: 5 improvement + 9 derived
  • q=4:
  • q=5:
  • q=7: 1 improvement
  • q=9: 3 improvements + 1 derived

binary q=2

q=2 k=11 n=138 d=64 optimal
(using automorphisms)
( link )

it is a [138,11,64] code with group 48737 

generator matrix:
000000111111000011111111000011111111000000111111001111000000001111000011111111000011111111000011000000111111000000111111011000000001111000
001111001111001100001111000100011111000111011111010111000001110111000100000111000100000111011101000111000111000001000111111011111110001100
110111000111111100110011011001100011011001000111111001011110110011001100111001011000011011111101111011001011011111011001101100000010011001
010001010111110111011111101110101101011110101011110011101110010001000001000111111100000101101111001011010101100111011011100100001110110110
001010101011010000011111010100100001101010110111101011110011001001010010001111111001101000001110011011110110000010100000000000010110010001
101111111011000001110001011001000111010011010000000000010100001010000100010000001100001111000111101011010001101101001100111100111101101110
111110110001110011110101011111000111010001111111101110011101011110101101100010000100110001011000000000101000110000110110101101111001000000
001100011011001101100011011001010110110101000101110011010000100000101011000000110000001010101000110101111010001010010111011110011110101000
000110001100011110101101001001110110100111111111000101000111111000101100000100110001010110010001011011111010011111011010010100101000010111
100100011110100010011011101101011110101000011000000101111010011101000100000010001110101001101110001111110000100000100101010001010010111100
000100110111010101000001100111010100011111101100001111001000100101101100100000001101100101000100000011001010110110001111011100100100111010
corresponding to the solution:
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,1]
mindist=64
weight enumerator=1 [0]  1032 [64]  744 [72]  270 [80]  1 [96]  
q=2 k=12 n=68 d=28 optimal
(using automorphisms)
( link )

it is a [68,12,28] code with group 20830 

generator matrix:
00000000011111100000000011111101111000001111111111000000000111111000
00111111100000100000111100011110001000110000011111000111111001111110
01000001101111100011001100101100011011000011100011011000111000001110
00000110010011001101010111110100101011110100100111001001001110111101
00001010110001010001000000111101001000010000111100010111110010010101
00000100110111001110001101011101001001000101101000010001000000110110
01110101001011010111010100000101010001100010011011011011010110111110
00010000000010100010001110011100110010010111011001010100110011000011
01100111111011110011011111110111110001111000010111111001101110000011
00111101010010111001000110001100011101000010110101110001110010000110
00100011100111110000101100000011011111100101001010000100011010000000
11010111000011100100001011001001100010000100101101000000001010110011
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,1,0,0,1]
mindist=28
weight enumerator=1 [0]  830 [28]  1067 [32]  1620 [36]  468 [40]  110 [44]  
q=2 k=11 n=135 d=62 
(using program of Johannes Zwanzger)
( link )


generator matrix:
000000111111000011111111000011111111000000111111000000001111000011111111000011111111000011000000111111000000111111011000000001111000011
001111001111001100001111000100011111000111011111000001110111000100000111000100000111011101000111000111000001000111111011111110001100011
110111000111111100110011011001100011011001000111011110110011001100111001011000011011111101111011001011011111011001101100000010011001101
010001010111110111011111101110101101011110101011101110010001000001000111111100000101101111001011010101100111011011100100001110110110101
001010101011010000011111010100100001101010110111110011001001010010001111111001101000001110011011110110000010100000000000010110010001101
101111111011000001110001011001000111010011010000010100001010000100010000001100001111000111101011010001101101001100111100111101101110000
111110110001110011110101011111000111010001111111011101011110101101100010000100110001011000000000101000110000110110101101111001000000110
001100011011001101100011011001010110110101000101010000100000101011000000110000001010101000110101111010001010010111011110011110101000101
000110001100011110101101001001110110100111111111000111111000101100000100110001010110010001011011111010011111011010010100101000010111011
100100011110100010011011101101011110101000011000111010011101000100000010001110101001101110001111110000100000100101010001010010111100011
000100110111010101000001100111010100011111101100001000100101101100100000001101100101000100000011001010110110001111011100100100111010011
mindist=62
weight enumerator=1 [0]  696 [62]  336 [64]  624 [70]  120 [72]  216 [78]  54 [80]  1 [96
]  

ternary q=3

q=3 k=8 n=58 d=33
(using automorphisms)
( link )

it is a [58,8,33] code with group 763 
generator matrix:
0000000111111111011111101111110001111000111100011110000111
0000001011112222101122210111120010122011001211100010011001
0000010011221122221201212011220120012112020000112200101010
0000100012111112112011212202221210010200120112010021100001
0001000011111221120121122222202111000001201110201201001100
0010000011122122121212021222011102100111002002020210110100
0100000012211122222110221120111001202120120022101001010010
1000000002222211000000021112221111112222212200000001111111
corresponding to the solution:
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=33
weight enumerator=1 [0]  924 [33]  1600 [36]  1876 [39]  1652 [42]  448 [45]  56 [48]  4
 [51]  
q=3 k=9 n=201 d=123
(using automorphisms)
( link )

it is a [201,9,123] code with group 127330 
generator matrix:
000111111111000000111111000100111111111100001111111100001111111100000111111100011111111100000111111100011111111100011111111100001111111100001111111101001111111111000000111111000111111111000011111111011
111011111222000011001122000211111122222200000112222201110000112200011122222201100011112201111000012201100112222200100111222211110000022200110001111202110001111222001111012222111000011111111100111111110
012001222012001102221222111202011101111200112121112210220002012201102000012211200001122210222001200210222120011201200012111201220011100111110120111101220120002001010012220001111022211122111212001122011
020110012012110210022112122202211211222201000011220102010010021101121100220102211202221111012121102110102121122012011111112000221211202212011222002201121010111020021120121220012201212222011100121222102
122100020021120212121202201220112022111112122100011220100111120210112200202201012000120120201121122002222110111222001102121202012101012101020021020010212010122211000112200000212000101202012022112011022
220001101200020022121002210021021222002202202101102220200021222001112211000010201101022122102200121221220112022210110022220211122021012122202221012221120021102211100100202122000211211000012112112212110
211202022201220101220210001121202200220020001012020221021101000112121001120100011020212120111211011222011100102100002002021022221010200012212220201111212201210212021202101110201121012202021001200011000
021000102011111010022120211222111101012212010211011222212012012201201121110222221101102222102222212012211001200201122221021101210200012221021202111200211200000121221202021100220001101002112020100020000
120112100121101010022111102002012200000012221222020012110121110221011221202002101020201201102010021120022220022122201021111122200001211010001110102222111102122110000021112222120211210011201012122220212
corresponding to the solution:
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
mindist=123
weight enumerator=1 [0]  1652 [123]  2046 [126]  2728 [129]  2768 [132]  3308 [135]  3184
 [138]  1966 [141]  1206 [144]  520 [147]  216 [150]  72 [153]  12 [156
]  2 [159]  2 [177]  
q=3 k=9 n=206 d=126
(using automorphisms)
( link )

it is a [205,9,125] code with group 127330 
generator matrix:
00011111111100011111111100111111111100011111111100001111111100011111111100011111111100011111111100011111111100000111111100011111111100001111111100000111111111001111111111000011111111111000100001111111101110
11101111122201100011112211111122222201112222222200000112222200100111222200101111222200100111222200100111222200000011222211100001122200110001111201111011112222110000001111111100111111011111111110000011110011
01200122201211222201121202011101111210200000011200112121112211112122011200020122002201200012111211211011111101111001000100200021100111110120111101112201121111120001221122111212001122102112201120012200110110
02011001201211201122201202211211222212110012212201000011220101121212022101112012220112011111112001211212012210022212002200201210102212011222002210120100101211001220111202011100121222001022120220211202212011
12210002002121100120002120112022111100102210121012122100011201000221212110012011120022001102121211112012200220102002121201200220021001020021020010121000102021012222020022012022112011011100110001101220002001
22000110120011100111120221021222002202010222212202202101102222112201210202201112001010110022220221010120011220021210202010121222000222202221012222100101122120002121222112012112112212002120012212110111222200
21120202220101120101221221202200220001010212200020001012020222220202021011101021200100002002021012202121211000201220022002002100212212212220201110000110121202120012220211021001200011021110020210212110121001
02100010201112110122101022111101012220111211001112010211011211220202200120200212102201122221021102222111111000110110001200120210012221021202111221020022020200222212011200112020100020021122202001001110100220
12011210012122101101011102012200000012212011202012221222020011121100012020120210102222201021111121120120121222102000100212212212002110001110102200210000001101122102100222201012122220220122220210100100122101
corresponding to the solution:
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
mindist=126
weight enumerator=1 [0]  1326 [126]  2268 [129]  2524 [132]  3014 [135]  3096 [138]  2956
 [141]  2082 [144]  1308 [147]  784 [150]  296 [153]  24 [156]  2 [162
]  2 [171]  
q=3 k=9 n=215 d=132
(using automorphisms)
( link )

it is a [215,9,132] code with group 127330 
generator matrix:
00011111111100111111111101111111111100111100111111111100001111111100000111111101111100000001111100111111111100011111111100011111111100001111111100011111111100001111111111000001111111001111111111000011111111111100111
11101111122211111122222210011111122211022201011112222200000112222200011122222200012201111110112201001111112200100111222211100001122200110001111200100001222211110011122222001110000112110000001111111100111111000111010
01200122201202011101111211200111212212101211201110112200112121112211101200112200210210000110121202020001220201200012111200101121202211110120111101001222000112220101211111000000122121120001221122111212001122002012001
02011001201202211211222201022002200221112222210122022201000011220111220012020112010120112122010102221120001112011111112002122201020012011222002200112012222200121121011111111221112110001220111202011100121222011202122
12210002002120112022111112002021021100201020112010100012122100011202021212001222221120010111212111112210122022001102121212010220111201020021020010220102012021020212001221122112201022012222020022012022112011200202202
22000110120021021222002220020002002012221112211022200102202101102210102102022021020211021002110200020212020110110022220202121001121022202221012212011111112021011222210220212021021102002121222112012112112212210021220
21120202220121202200220022012210111220111022210002012020001012020220020221122110220220122220212022120121101100002002021001111200002112212220201110002122220200102000010102212122002000120012220211021001200011001202200
02100010201122111101012210122102111212020122020210201012010211011200202200101102102100201222122102220220110001122221021120000122012221021202111212221002101011102112011200111021210222222212011200112020100020211112110
12011210012102012200000021110212110102122020112102221212221222020001111222001222020122101210011122021111122022201021111100210012210110001110102220202102210210222121212001120000010100122102100222201012122220211120202
corresponding to the solution:
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0]
mindist=132
weight enumerator=1 [0]  1480 [132]  2194 [135]  2274 [138]  3398 [141]  2938 [144]  2846
 [147]  2044 [150]  1442 [153]  704 [156]  204 [159]  120 [162]  24 [165
]  8 [171]  2 [174]  2 [177]  2 [180]  
q=3 k=10 n=100 d=57
(using automorphisms)
( link )

it is a [100,8,57] code with group 79016 
generator matrix:
0000000011111111111100000000111111111111000001111111111111110000000011111111111100000000111111111111
0000011100011122222200011111001111122222011110000000122222220000011100011111122200111111000111222222
0001100201201101112200100022000011200122112220000011000111221111111201201112212201001122011122011111
0110201120011222222211201112020101212102120111111202011001220011211211101121200211020100022001011122
0110022221200221222201121210111220001112202120002200022122021201201020222222120101220102212012101122
0021200122122220020012200000012000210012011000022101201220110122001100211222211121021100220101200022
0221222221010201120200202110100000222020110120221021010122220200102110020101001020121111200102020002
0210220212011222120122112111202122100002112220200202101111221211012101100201010011200112001001021202
0100012201122002012102122220020120121000200100000022221200012110021210200010122011020212200222211012
1111001211021201210110012012110012212212011100120011212101000002002201120021111220202110101011001022
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0]
mindist=57
weight enumerator=1 [0]  2920 [57]  5480 [60]  10080 [63]  15080 [66]  13320 [69]  7600 [72
]  3888 [75]  640 [78]  40 [81]  

q=4


q=7

 q=7 k=7 n=87 d=65
(using automorphisms)
( link )

it is a [87,7,65] code with group 34

generator matrix:
000000001111111111111111111110000000111111111111111111111100001111111111111111111111111
000011110000011111333336666660011111000111122233334445666611110000011222233445555666666
011111561355600334224561225661111256023123602511262562346612260335502002613011456114556
024646615004514164463404060061203352251304666503112340501524515254630350315664261160112
055321233452230662523536243031022652133025340444231033331526036002246235102400406016566
042061054134644622364305405000500454443056436364435615415045611453405313063620325455343
153424006555161263655523425162112505000440016146214625155042525523651563265216261463266
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0]
mindist=65
weight enumerator=1 [0]  3828 [65]  5220 [66]  8178 [67]  14616 [68]  23142 [69]  37932 [70
]  46458 [71]  70470 [72]  83172 [73]  98310 [74]  98832 [75]  104052 [76
]  77430 [77]  59508 [78]  45066 [79]  23664 [80]  14094 [81]  7134 [82
]  1914 [83]  522 [84]  

q=9

 
q=9 k=5 n=92 d=76
(using automorphisms)
( link )

it is a [92,5,76] code with group 78365 
generator matrix:

[[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]]
[[1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:
[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:
[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:
[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:
[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:
[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:
[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:
[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]]
[[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,2]:[0,2]:[0,2]:[0,1]:[0,1]:[0,2]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,2]:
[0,2]:[0,1]:[0,2]:[0,2]:[2,2]:[2,2]:[2,2]:[1,1]:[1,1]:[2,2]:[1,1]:[1,1]:
[2,2]:[2,2]:[2,2]:[1,1]:[1,1]:[2,2]:[1,1]:[1,1]:[2,2]:[2,2]:[2,2]:[1,1]:
[1,1]:[2,2]:[1,1]:[1,1]:[2,1]:[2,1]:[2,1]:[1,2]:[1,2]:[2,1]:[1,2]:[1,2]:
[2,1]:[2,1]:[2,1]:[1,2]:[1,2]:[2,1]:[1,2]:[1,2]:[1,0]:[1,0]:[1,0]:[2,0]:
[2,0]:[1,0]:[2,0]:[2,0]:[1,0]:[1,0]:[1,0]:[2,0]:[2,0]:[1,0]:[2,0]:[2,0]:
[1,2]:[1,2]:[1,2]:[2,1]:[2,1]:[1,2]:[2,1]:[2,1]]
[[0,1]:[0,2]:[1,2]:[2,1]:[1,1]:[2,2]:[1,2]:[1,0]:[0,2]:[2,1]:[0,1]:[2,0]:
[1,2]:[2,1]:[2,2]:[0,2]:[2,0]:[1,1]:[1,0]:[0,1]:[1,1]:[2,2]:[1,2]:[1,0]:
[0,2]:[2,1]:[0,1]:[2,0]:[0,1]:[0,2]:[1,0]:[2,2]:[2,1]:[2,0]:[1,2]:[1,1]:
[1,0]:[2,0]:[0,2]:[2,1]:[1,1]:[0,1]:[2,2]:[1,2]:[0,2]:[0,1]:[2,0]:[1,1]:
[1,2]:[1,0]:[2,1]:[2,2]:[1,0]:[2,0]:[0,2]:[2,1]:[1,1]:[0,1]:[2,2]:[1,2]:
[0,2]:[0,1]:[2,0]:[1,1]:[1,2]:[1,0]:[2,1]:[2,2]:[2,2]:[1,1]:[2,1]:[2,0]:
[0,1]:[1,2]:[0,2]:[1,0]:[0,1]:[0,2]:[1,0]:[2,2]:[2,1]:[2,0]:[1,2]:[1,1]:
[2,1]:[1,2]:[1,1]:[0,1]:[1,0]:[2,2]:[2,0]:[0,2]]
[[0,0]:[0,0]:[0,0]:[0,0]:[2,1]:[1,2]:[2,2]:[1,0]:[0,1]:[1,1]:[0,2]:[2,0]:
[1,1]:[2,2]:[2,1]:[0,2]:[1,0]:[1,2]:[2,0]:[0,1]:[1,1]:[2,2]:[2,1]:[0,2]:
[1,0]:[1,2]:[2,0]:[0,1]:[2,0]:[1,0]:[0,2]:[2,2]:[1,2]:[0,1]:[2,1]:[1,1]:
[2,2]:[1,1]:[1,2]:[0,1]:[2,0]:[2,1]:[1,0]:[0,2]:[2,0]:[1,0]:[0,2]:[2,2]:
[1,2]:[0,1]:[2,1]:[1,1]:[0,2]:[0,1]:[1,0]:[1,2]:[1,1]:[2,0]:[2,2]:[2,1]:
[2,2]:[1,1]:[1,2]:[0,1]:[2,0]:[2,1]:[1,0]:[0,2]:[0,2]:[0,1]:[1,0]:[1,2]:
[1,1]:[2,0]:[2,2]:[2,1]:[2,2]:[1,1]:[1,2]:[0,1]:[2,0]:[2,1]:[1,0]:[0,2]:
[0,2]:[0,1]:[1,0]:[1,2]:[1,1]:[2,0]:[2,2]:[2,1]]

corresponding to the solution:
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=76
weight enumerator=1 [0]  2160 [76]  2720 [77]  4768 [78]  5248 [79]  5432 [80]  7072 [81
]  7296 [82]  5920 [83]  6656 [84]  4672 [85]  4096 [86]  2048 [87]  496
 [88]  320 [89]  128 [90]  16 [92]  
 
q=9 k=5 n=108 d=90
(using automorphisms)
( link )

it is a [108,5,90] code with group 79619 
generator matrix:

[[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]
]
[[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,1]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[1,0]:[2,0]:
[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:
[2,1]:[2,1]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:
[2,0]:[2,0]:[2,0]:[2,0]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:
[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]:
[1,0]:[1,0]:[1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:
[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]
]
[[0,0]:[0,0]:[0,2]:[1,1]:[1,1]:[2,0]:[2,2]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:
[2,0]:[2,2]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:[2,0]:[2,2]:[0,0]:[0,0]:
[0,1]:[1,1]:[1,1]:[1,2]:[2,0]:[2,2]:[2,2]:[0,0]:[0,0]:[1,0]:[1,0]:[1,1]:
[1,2]:[2,0]:[0,0]:[0,0]:[1,0]:[2,0]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:
[1,1]:[1,1]:[1,1]:[2,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[2,2]:[2,2]:[0,2]:
[1,0]:[1,1]:[1,1]:[2,1]:[2,2]:[2,2]:[0,0]:[0,1]:[1,1]:[2,0]:[2,1]:[2,1]:
[2,2]:[0,0]:[0,0]:[0,1]:[0,1]:[0,2]:[1,1]:[2,1]:[0,1]:[0,2]:[1,0]:[1,1]:
[1,1]:[1,1]:[2,0]:[0,2]:[1,0]:[1,0]:[1,2]:[2,0]:[2,0]:[2,2]:[0,1]:[0,2]:
[1,0]:[2,0]:[2,1]:[2,1]:[2,1]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:[2,0]:[2,2]
]
[[0,0]:[1,1]:[0,0]:[1,0]:[1,2]:[2,0]:[1,0]:[1,0]:[0,1]:[1,2]:[2,2]:[2,1]:
[1,2]:[2,1]:[0,0]:[1,0]:[0,1]:[1,2]:[2,2]:[2,1]:[1,2]:[2,1]:[0,0]:[0,0]:
[0,1]:[1,1]:[2,1]:[2,2]:[0,1]:[0,1]:[1,2]:[1,2]:[2,0]:[0,1]:[0,2]:[1,0]:
[1,2]:[1,2]:[2,0]:[2,2]:[1,1]:[1,2]:[2,2]:[0,1]:[1,1]:[2,1]:[2,2]:[2,2]:
[0,0]:[2,1]:[2,1]:[2,2]:[0,1]:[2,2]:[0,2]:[2,1]:[0,2]:[0,1]:[2,0]:[2,2]:
[1,0]:[0,1]:[1,2]:[2,0]:[0,0]:[0,1]:[1,1]:[1,0]:[0,1]:[1,0]:[2,0]:[2,1]:
[2,0]:[0,1]:[2,1]:[2,1]:[2,2]:[1,2]:[1,0]:[1,2]:[0,0]:[0,1]:[0,2]:[1,1]:
[1,2]:[2,0]:[2,0]:[0,1]:[1,0]:[2,0]:[2,2]:[2,2]:[2,2]:[0,2]:[1,0]:[0,2]:
[2,0]:[0,0]:[0,2]:[1,1]:[2,1]:[0,1]:[1,1]:[2,2]:[0,0]:[0,0]:[2,2]:[1,0]
]
[[0,1]:[2,2]:[1,0]:[0,0]:[2,0]:[0,1]:[1,2]:[0,1]:[1,2]:[1,1]:[2,2]:[1,1]:
[2,2]:[2,0]:[0,0]:[0,1]:[1,2]:[1,1]:[2,2]:[1,1]:[2,2]:[2,0]:[0,0]:[0,0]:
[2,1]:[2,2]:[1,0]:[1,0]:[0,1]:[0,2]:[0,0]:[0,2]:[1,1]:[2,0]:[0,1]:[1,1]:
[1,1]:[1,0]:[0,0]:[2,2]:[1,1]:[0,2]:[0,0]:[1,1]:[2,0]:[2,2]:[0,2]:[0,0]:
[0,0]:[0,2]:[1,2]:[0,1]:[0,1]:[0,0]:[2,2]:[0,2]:[0,2]:[0,0]:[1,2]:[2,1]:
[0,0]:[2,2]:[2,2]:[2,1]:[2,1]:[2,2]:[2,1]:[2,2]:[0,1]:[0,2]:[0,2]:[2,0]:
[0,1]:[0,0]:[2,1]:[0,0]:[2,0]:[1,2]:[1,2]:[0,1]:[2,2]:[1,2]:[1,0]:[1,0]:
[0,2]:[2,0]:[2,0]:[0,0]:[1,2]:[0,2]:[0,0]:[1,0]:[2,1]:[2,1]:[0,1]:[0,2]:
[1,1]:[1,2]:[0,2]:[1,0]:[0,1]:[1,1]:[1,0]:[1,2]:[2,2]:[1,2]:[0,2]:[0,0]
]

corresponding to the solution:
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=90
weight enumerator=1 [0]  2184 [90]  3360 [91]  4144 [92]  5112 [93]  5456 [94]  5992 [95
]  6608 [96]  6272 [97]  5768 [98]  5320 [99]  3312 [100]  2720 [101]  
1680 [102]  896 [103]  168 [104]  56 [105]  

 
q=9 k=5 n=123 d=105
(using automorphisms)
( link )

it is a [123,5,103] code with group 79619 
generator matrix:
[[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,0]]
[[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,1]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:
[2,0]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:
[2,2]:[2,2]:[2,2]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:[2,0]:[2,0]:
[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:
[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[1,0]:[1,0]:
[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[0,2]:
[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:
[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]]
[[0,0]:[0,0]:[0,0]:[0,2]:[1,1]:[1,1]:[2,0]:[2,2]:[0,0]:[0,0]:[0,2]:[1,2]:
[2,0]:[2,1]:[2,2]:[2,2]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[2,2]:
[2,2]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[2,2]:[2,2]:[0,0]:[0,0]:[0,1]:[1,0]:
[1,1]:[2,2]:[2,2]:[0,2]:[1,0]:[1,1]:[1,1]:[2,1]:[2,2]:[2,2]:[0,1]:[0,2]:
[1,0]:[2,0]:[2,1]:[2,1]:[2,1]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:[2,0]:[2,2]:
[0,1]:[0,2]:[1,0]:[1,1]:[1,1]:[1,1]:[2,0]:[0,2]:[1,1]:[1,2]:[1,2]:[2,0]:
[2,1]:[2,1]:[0,0]:[0,0]:[0,1]:[1,2]:[1,2]:[2,0]:[2,1]:[0,0]:[0,1]:[1,0]:
[1,1]:[1,1]:[1,2]:[2,1]:[0,0]:[0,2]:[0,2]:[0,2]:[1,0]:[1,0]:[1,0]:[1,0]:
[1,0]:[1,0]:[1,1]:[1,2]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,2]:[1,2]:[1,2]:
[2,0]:[0,1]:[0,1]:[0,2]:[0,2]:[1,0]:[1,1]:[1,2]:[1,0]:[1,0]:[1,0]:[1,1]:
[1,2]:[2,1]:[2,2]]
[[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:[1,2]:[2,0]:[1,0]:[0,0]:[2,1]:[0,1]:[0,2]:
[0,1]:[2,0]:[0,2]:[2,2]:[0,0]:[0,0]:[1,0]:[1,1]:[2,2]:[1,0]:[1,0]:[1,2]:
[2,1]:[1,0]:[1,1]:[2,2]:[1,0]:[1,0]:[1,2]:[2,1]:[0,1]:[2,2]:[0,2]:[2,1]:
[0,2]:[0,1]:[2,0]:[2,2]:[1,0]:[0,1]:[1,2]:[2,0]:[0,0]:[0,1]:[1,0]:[0,2]:
[2,0]:[0,0]:[0,2]:[1,1]:[2,1]:[0,1]:[1,1]:[2,2]:[0,0]:[0,0]:[2,2]:[1,0]:
[2,1]:[2,2]:[2,2]:[0,0]:[2,1]:[2,1]:[2,2]:[2,0]:[1,2]:[1,1]:[2,0]:[2,0]:
[2,1]:[2,2]:[1,2]:[2,0]:[2,2]:[0,2]:[2,0]:[1,0]:[1,0]:[1,1]:[0,0]:[1,2]:
[1,0]:[2,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[2,1]:[0,1]:[2,0]:[2,0]:[0,0]:
[0,1]:[1,2]:[2,0]:[2,1]:[1,2]:[0,0]:[0,2]:[0,1]:[0,0]:[0,0]:[0,1]:[1,1]:
[2,1]:[0,1]:[2,0]:[1,0]:[1,2]:[0,2]:[1,2]:[1,2]:[0,0]:[0,1]:[0,1]:[2,0]:
[2,0]:[2,0]:[0,1]]
[[0,0]:[0,1]:[2,2]:[1,0]:[0,0]:[2,0]:[0,1]:[1,2]:[0,0]:[2,2]:[1,0]:[2,0]:
[1,2]:[2,0]:[1,0]:[0,2]:[0,0]:[0,0]:[2,1]:[0,1]:[0,1]:[0,1]:[2,2]:[1,1]:
[1,2]:[2,1]:[0,1]:[0,1]:[0,1]:[2,2]:[1,1]:[1,2]:[0,1]:[0,0]:[2,2]:[0,2]:
[0,2]:[0,0]:[1,2]:[2,1]:[0,0]:[2,2]:[2,2]:[2,1]:[2,1]:[2,2]:[0,1]:[0,2]:
[1,1]:[1,2]:[0,2]:[1,0]:[0,1]:[1,1]:[1,0]:[1,2]:[2,2]:[1,2]:[0,2]:[0,0]:
[2,2]:[0,2]:[0,0]:[0,0]:[0,2]:[1,2]:[0,1]:[2,0]:[0,1]:[0,0]:[1,0]:[2,2]:
[1,2]:[0,1]:[0,0]:[2,0]:[1,0]:[1,1]:[0,0]:[1,2]:[1,0]:[2,0]:[0,1]:[0,0]:
[0,1]:[1,2]:[1,0]:[2,2]:[1,1]:[2,1]:[2,2]:[1,0]:[1,0]:[1,0]:[1,2]:[1,2]:
[1,2]:[2,1]:[0,2]:[2,1]:[2,0]:[1,1]:[0,2]:[2,1]:[2,0]:[0,1]:[0,2]:[0,1]:
[2,2]:[0,2]:[2,2]:[0,0]:[2,1]:[2,2]:[1,2]:[2,0]:[0,0]:[0,2]:[1,1]:[1,1]:
[2,2]:[0,0]:[2,0]]

corresponding to the solution:
[0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=103
weight enumerator=1 [0]  1848 [103]  3976 [104]  3752 [105]  4872 [106]  4704 [107]  5008
 [108]  5688 [109]  6272 [110]  6608 [111]  5096 [112]  3584 [113]  3472
 [114]  1968 [115]  1192 [116]  896 [117]  112 [118]  

University of Bayreuth -