new codes from 150908
- binary: 2 optimal + 1 improvement + 3 derived
- ternary: 5 improvement + 9 derived
- q=4:
- q=5:
- q=7: 1 improvement
- q=9: 3 improvements + 1 derived
binary q=2
q=2 k=11 n=138 d=64 optimal (using automorphisms) ( link ) it is a [138,11,64] code with group 48737 generator matrix: 000000111111000011111111000011111111000000111111001111000000001111000011111111000011111111000011000000111111000000111111011000000001111000 001111001111001100001111000100011111000111011111010111000001110111000100000111000100000111011101000111000111000001000111111011111110001100 110111000111111100110011011001100011011001000111111001011110110011001100111001011000011011111101111011001011011111011001101100000010011001 010001010111110111011111101110101101011110101011110011101110010001000001000111111100000101101111001011010101100111011011100100001110110110 001010101011010000011111010100100001101010110111101011110011001001010010001111111001101000001110011011110110000010100000000000010110010001 101111111011000001110001011001000111010011010000000000010100001010000100010000001100001111000111101011010001101101001100111100111101101110 111110110001110011110101011111000111010001111111101110011101011110101101100010000100110001011000000000101000110000110110101101111001000000 001100011011001101100011011001010110110101000101110011010000100000101011000000110000001010101000110101111010001010010111011110011110101000 000110001100011110101101001001110110100111111111000101000111111000101100000100110001010110010001011011111010011111011010010100101000010111 100100011110100010011011101101011110101000011000000101111010011101000100000010001110101001101110001111110000100000100101010001010010111100 000100110111010101000001100111010100011111101100001111001000100101101100100000001101100101000100000011001010110110001111011100100100111010 corresponding to the solution: [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,1,0,1] mindist=64 weight enumerator=1 [0] 1032 [64] 744 [72] 270 [80] 1 [96]
q=2 k=12 n=68 d=28 optimal (using automorphisms) ( link ) it is a [68,12,28] code with group 20830 generator matrix: 00000000011111100000000011111101111000001111111111000000000111111000 00111111100000100000111100011110001000110000011111000111111001111110 01000001101111100011001100101100011011000011100011011000111000001110 00000110010011001101010111110100101011110100100111001001001110111101 00001010110001010001000000111101001000010000111100010111110010010101 00000100110111001110001101011101001001000101101000010001000000110110 01110101001011010111010100000101010001100010011011011011010110111110 00010000000010100010001110011100110010010111011001010100110011000011 01100111111011110011011111110111110001111000010111111001101110000011 00111101010010111001000110001100011101000010110101110001110010000110 00100011100111110000101100000011011111100101001010000100011010000000 11010111000011100100001011001001100010000100101101000000001010110011 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,1,0,0,1] mindist=28 weight enumerator=1 [0] 830 [28] 1067 [32] 1620 [36] 468 [40] 110 [44]
q=2 k=11 n=135 d=62 (using program of Johannes Zwanzger) ( link ) generator matrix: 000000111111000011111111000011111111000000111111000000001111000011111111000011111111000011000000111111000000111111011000000001111000011 001111001111001100001111000100011111000111011111000001110111000100000111000100000111011101000111000111000001000111111011111110001100011 110111000111111100110011011001100011011001000111011110110011001100111001011000011011111101111011001011011111011001101100000010011001101 010001010111110111011111101110101101011110101011101110010001000001000111111100000101101111001011010101100111011011100100001110110110101 001010101011010000011111010100100001101010110111110011001001010010001111111001101000001110011011110110000010100000000000010110010001101 101111111011000001110001011001000111010011010000010100001010000100010000001100001111000111101011010001101101001100111100111101101110000 111110110001110011110101011111000111010001111111011101011110101101100010000100110001011000000000101000110000110110101101111001000000110 001100011011001101100011011001010110110101000101010000100000101011000000110000001010101000110101111010001010010111011110011110101000101 000110001100011110101101001001110110100111111111000111111000101100000100110001010110010001011011111010011111011010010100101000010111011 100100011110100010011011101101011110101000011000111010011101000100000010001110101001101110001111110000100000100101010001010010111100011 000100110111010101000001100111010100011111101100001000100101101100100000001101100101000100000011001010110110001111011100100100111010011 mindist=62 weight enumerator=1 [0] 696 [62] 336 [64] 624 [70] 120 [72] 216 [78] 54 [80] 1 [96 ]
ternary q=3
q=3 k=8 n=58 d=33 (using automorphisms) ( link ) it is a [58,8,33] code with group 763 generator matrix: 0000000111111111011111101111110001111000111100011110000111 0000001011112222101122210111120010122011001211100010011001 0000010011221122221201212011220120012112020000112200101010 0000100012111112112011212202221210010200120112010021100001 0001000011111221120121122222202111000001201110201201001100 0010000011122122121212021222011102100111002002020210110100 0100000012211122222110221120111001202120120022101001010010 1000000002222211000000021112221111112222212200000001111111 corresponding to the solution: [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=33 weight enumerator=1 [0] 924 [33] 1600 [36] 1876 [39] 1652 [42] 448 [45] 56 [48] 4 [51]
q=3 k=9 n=201 d=123 (using automorphisms) ( link ) it is a [201,9,123] code with group 127330 generator matrix: 000111111111000000111111000100111111111100001111111100001111111100000111111100011111111100000111111100011111111100011111111100001111111100001111111101001111111111000000111111000111111111000011111111011 111011111222000011001122000211111122222200000112222201110000112200011122222201100011112201111000012201100112222200100111222211110000022200110001111202110001111222001111012222111000011111111100111111110 012001222012001102221222111202011101111200112121112210220002012201102000012211200001122210222001200210222120011201200012111201220011100111110120111101220120002001010012220001111022211122111212001122011 020110012012110210022112122202211211222201000011220102010010021101121100220102211202221111012121102110102121122012011111112000221211202212011222002201121010111020021120121220012201212222011100121222102 122100020021120212121202201220112022111112122100011220100111120210112200202201012000120120201121122002222110111222001102121202012101012101020021020010212010122211000112200000212000101202012022112011022 220001101200020022121002210021021222002202202101102220200021222001112211000010201101022122102200121221220112022210110022220211122021012122202221012221120021102211100100202122000211211000012112112212110 211202022201220101220210001121202200220020001012020221021101000112121001120100011020212120111211011222011100102100002002021022221010200012212220201111212201210212021202101110201121012202021001200011000 021000102011111010022120211222111101012212010211011222212012012201201121110222221101102222102222212012211001200201122221021101210200012221021202111200211200000121221202021100220001101002112020100020000 120112100121101010022111102002012200000012221222020012110121110221011221202002101020201201102010021120022220022122201021111122200001211010001110102222111102122110000021112222120211210011201012122220212 corresponding to the solution: [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] mindist=123 weight enumerator=1 [0] 1652 [123] 2046 [126] 2728 [129] 2768 [132] 3308 [135] 3184 [138] 1966 [141] 1206 [144] 520 [147] 216 [150] 72 [153] 12 [156 ] 2 [159] 2 [177]
q=3 k=9 n=206 d=126 (using automorphisms) ( link ) it is a [205,9,125] code with group 127330 generator matrix: 00011111111100011111111100111111111100011111111100001111111100011111111100011111111100011111111100011111111100000111111100011111111100001111111100000111111111001111111111000011111111111000100001111111101110 11101111122201100011112211111122222201112222222200000112222200100111222200101111222200100111222200100111222200000011222211100001122200110001111201111011112222110000001111111100111111011111111110000011110011 01200122201211222201121202011101111210200000011200112121112211112122011200020122002201200012111211211011111101111001000100200021100111110120111101112201121111120001221122111212001122102112201120012200110110 02011001201211201122201202211211222212110012212201000011220101121212022101112012220112011111112001211212012210022212002200201210102212011222002210120100101211001220111202011100121222001022120220211202212011 12210002002121100120002120112022111100102210121012122100011201000221212110012011120022001102121211112012200220102002121201200220021001020021020010121000102021012222020022012022112011011100110001101220002001 22000110120011100111120221021222002202010222212202202101102222112201210202201112001010110022220221010120011220021210202010121222000222202221012222100101122120002121222112012112112212002120012212110111222200 21120202220101120101221221202200220001010212200020001012020222220202021011101021200100002002021012202121211000201220022002002100212212212220201110000110121202120012220211021001200011021110020210212110121001 02100010201112110122101022111101012220111211001112010211011211220202200120200212102201122221021102222111111000110110001200120210012221021202111221020022020200222212011200112020100020021122202001001110100220 12011210012122101101011102012200000012212011202012221222020011121100012020120210102222201021111121120120121222102000100212212212002110001110102200210000001101122102100222201012122220220122220210100100122101 corresponding to the solution: [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] mindist=126 weight enumerator=1 [0] 1326 [126] 2268 [129] 2524 [132] 3014 [135] 3096 [138] 2956 [141] 2082 [144] 1308 [147] 784 [150] 296 [153] 24 [156] 2 [162 ] 2 [171]
q=3 k=9 n=215 d=132 (using automorphisms) ( link ) it is a [215,9,132] code with group 127330 generator matrix: 00011111111100111111111101111111111100111100111111111100001111111100000111111101111100000001111100111111111100011111111100011111111100001111111100011111111100001111111111000001111111001111111111000011111111111100111 11101111122211111122222210011111122211022201011112222200000112222200011122222200012201111110112201001111112200100111222211100001122200110001111200100001222211110011122222001110000112110000001111111100111111000111010 01200122201202011101111211200111212212101211201110112200112121112211101200112200210210000110121202020001220201200012111200101121202211110120111101001222000112220101211111000000122121120001221122111212001122002012001 02011001201202211211222201022002200221112222210122022201000011220111220012020112010120112122010102221120001112011111112002122201020012011222002200112012222200121121011111111221112110001220111202011100121222011202122 12210002002120112022111112002021021100201020112010100012122100011202021212001222221120010111212111112210122022001102121212010220111201020021020010220102012021020212001221122112201022012222020022012022112011200202202 22000110120021021222002220020002002012221112211022200102202101102210102102022021020211021002110200020212020110110022220202121001121022202221012212011111112021011222210220212021021102002121222112012112112212210021220 21120202220121202200220022012210111220111022210002012020001012020220020221122110220220122220212022120121101100002002021001111200002112212220201110002122220200102000010102212122002000120012220211021001200011001202200 02100010201122111101012210122102111212020122020210201012010211011200202200101102102100201222122102220220110001122221021120000122012221021202111212221002101011102112011200111021210222222212011200112020100020211112110 12011210012102012200000021110212110102122020112102221212221222020001111222001222020122101210011122021111122022201021111100210012210110001110102220202102210210222121212001120000010100122102100222201012122220211120202 corresponding to the solution: [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0] mindist=132 weight enumerator=1 [0] 1480 [132] 2194 [135] 2274 [138] 3398 [141] 2938 [144] 2846 [147] 2044 [150] 1442 [153] 704 [156] 204 [159] 120 [162] 24 [165 ] 8 [171] 2 [174] 2 [177] 2 [180]
q=3 k=10 n=100 d=57 (using automorphisms) ( link ) it is a [100,8,57] code with group 79016 generator matrix: 0000000011111111111100000000111111111111000001111111111111110000000011111111111100000000111111111111 0000011100011122222200011111001111122222011110000000122222220000011100011111122200111111000111222222 0001100201201101112200100022000011200122112220000011000111221111111201201112212201001122011122011111 0110201120011222222211201112020101212102120111111202011001220011211211101121200211020100022001011122 0110022221200221222201121210111220001112202120002200022122021201201020222222120101220102212012101122 0021200122122220020012200000012000210012011000022101201220110122001100211222211121021100220101200022 0221222221010201120200202110100000222020110120221021010122220200102110020101001020121111200102020002 0210220212011222120122112111202122100002112220200202101111221211012101100201010011200112001001021202 0100012201122002012102122220020120121000200100000022221200012110021210200010122011020212200222211012 1111001211021201210110012012110012212212011100120011212101000002002201120021111220202110101011001022 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0] mindist=57 weight enumerator=1 [0] 2920 [57] 5480 [60] 10080 [63] 15080 [66] 13320 [69] 7600 [72 ] 3888 [75] 640 [78] 40 [81]
q=4
q=7
q=7 k=7 n=87 d=65 (using automorphisms) ( link ) it is a [87,7,65] code with group 34 generator matrix: 000000001111111111111111111110000000111111111111111111111100001111111111111111111111111 000011110000011111333336666660011111000111122233334445666611110000011222233445555666666 011111561355600334224561225661111256023123602511262562346612260335502002613011456114556 024646615004514164463404060061203352251304666503112340501524515254630350315664261160112 055321233452230662523536243031022652133025340444231033331526036002246235102400406016566 042061054134644622364305405000500454443056436364435615415045611453405313063620325455343 153424006555161263655523425162112505000440016146214625155042525523651563265216261463266 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0] mindist=65 weight enumerator=1 [0] 3828 [65] 5220 [66] 8178 [67] 14616 [68] 23142 [69] 37932 [70 ] 46458 [71] 70470 [72] 83172 [73] 98310 [74] 98832 [75] 104052 [76 ] 77430 [77] 59508 [78] 45066 [79] 23664 [80] 14094 [81] 7134 [82 ] 1914 [83] 522 [84]
q=9
q=9 k=5 n=92 d=76 (using automorphisms) ( link ) it is a [92,5,76] code with group 78365 generator matrix: [[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]] [[1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]: [0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]: [1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]: [0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]: [1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]: [0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]: [1,2]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]: [0,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]:[2,2]] [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]: [0,2]:[0,2]:[0,2]:[0,1]:[0,1]:[0,2]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,2]: [0,2]:[0,1]:[0,2]:[0,2]:[2,2]:[2,2]:[2,2]:[1,1]:[1,1]:[2,2]:[1,1]:[1,1]: [2,2]:[2,2]:[2,2]:[1,1]:[1,1]:[2,2]:[1,1]:[1,1]:[2,2]:[2,2]:[2,2]:[1,1]: [1,1]:[2,2]:[1,1]:[1,1]:[2,1]:[2,1]:[2,1]:[1,2]:[1,2]:[2,1]:[1,2]:[1,2]: [2,1]:[2,1]:[2,1]:[1,2]:[1,2]:[2,1]:[1,2]:[1,2]:[1,0]:[1,0]:[1,0]:[2,0]: [2,0]:[1,0]:[2,0]:[2,0]:[1,0]:[1,0]:[1,0]:[2,0]:[2,0]:[1,0]:[2,0]:[2,0]: [1,2]:[1,2]:[1,2]:[2,1]:[2,1]:[1,2]:[2,1]:[2,1]] [[0,1]:[0,2]:[1,2]:[2,1]:[1,1]:[2,2]:[1,2]:[1,0]:[0,2]:[2,1]:[0,1]:[2,0]: [1,2]:[2,1]:[2,2]:[0,2]:[2,0]:[1,1]:[1,0]:[0,1]:[1,1]:[2,2]:[1,2]:[1,0]: [0,2]:[2,1]:[0,1]:[2,0]:[0,1]:[0,2]:[1,0]:[2,2]:[2,1]:[2,0]:[1,2]:[1,1]: [1,0]:[2,0]:[0,2]:[2,1]:[1,1]:[0,1]:[2,2]:[1,2]:[0,2]:[0,1]:[2,0]:[1,1]: [1,2]:[1,0]:[2,1]:[2,2]:[1,0]:[2,0]:[0,2]:[2,1]:[1,1]:[0,1]:[2,2]:[1,2]: [0,2]:[0,1]:[2,0]:[1,1]:[1,2]:[1,0]:[2,1]:[2,2]:[2,2]:[1,1]:[2,1]:[2,0]: [0,1]:[1,2]:[0,2]:[1,0]:[0,1]:[0,2]:[1,0]:[2,2]:[2,1]:[2,0]:[1,2]:[1,1]: [2,1]:[1,2]:[1,1]:[0,1]:[1,0]:[2,2]:[2,0]:[0,2]] [[0,0]:[0,0]:[0,0]:[0,0]:[2,1]:[1,2]:[2,2]:[1,0]:[0,1]:[1,1]:[0,2]:[2,0]: [1,1]:[2,2]:[2,1]:[0,2]:[1,0]:[1,2]:[2,0]:[0,1]:[1,1]:[2,2]:[2,1]:[0,2]: [1,0]:[1,2]:[2,0]:[0,1]:[2,0]:[1,0]:[0,2]:[2,2]:[1,2]:[0,1]:[2,1]:[1,1]: [2,2]:[1,1]:[1,2]:[0,1]:[2,0]:[2,1]:[1,0]:[0,2]:[2,0]:[1,0]:[0,2]:[2,2]: [1,2]:[0,1]:[2,1]:[1,1]:[0,2]:[0,1]:[1,0]:[1,2]:[1,1]:[2,0]:[2,2]:[2,1]: [2,2]:[1,1]:[1,2]:[0,1]:[2,0]:[2,1]:[1,0]:[0,2]:[0,2]:[0,1]:[1,0]:[1,2]: [1,1]:[2,0]:[2,2]:[2,1]:[2,2]:[1,1]:[1,2]:[0,1]:[2,0]:[2,1]:[1,0]:[0,2]: [0,2]:[0,1]:[1,0]:[1,2]:[1,1]:[2,0]:[2,2]:[2,1]] corresponding to the solution: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=76 weight enumerator=1 [0] 2160 [76] 2720 [77] 4768 [78] 5248 [79] 5432 [80] 7072 [81 ] 7296 [82] 5920 [83] 6656 [84] 4672 [85] 4096 [86] 2048 [87] 496 [88] 320 [89] 128 [90] 16 [92]
q=9 k=5 n=108 d=90 (using automorphisms) ( link ) it is a [108,5,90] code with group 79619 generator matrix: [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1] ] [[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]: [0,0]:[0,0]:[0,1]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[1,0]:[2,0]: [2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]: [2,1]:[2,1]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]: [2,0]:[2,0]:[2,0]:[2,0]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]: [1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]: [1,0]:[1,0]:[1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]: [0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0] ] [[0,0]:[0,0]:[0,2]:[1,1]:[1,1]:[2,0]:[2,2]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]: [2,0]:[2,2]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:[2,0]:[2,2]:[0,0]:[0,0]: [0,1]:[1,1]:[1,1]:[1,2]:[2,0]:[2,2]:[2,2]:[0,0]:[0,0]:[1,0]:[1,0]:[1,1]: [1,2]:[2,0]:[0,0]:[0,0]:[1,0]:[2,0]:[2,0]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]: [1,1]:[1,1]:[1,1]:[2,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[2,2]:[2,2]:[0,2]: [1,0]:[1,1]:[1,1]:[2,1]:[2,2]:[2,2]:[0,0]:[0,1]:[1,1]:[2,0]:[2,1]:[2,1]: [2,2]:[0,0]:[0,0]:[0,1]:[0,1]:[0,2]:[1,1]:[2,1]:[0,1]:[0,2]:[1,0]:[1,1]: [1,1]:[1,1]:[2,0]:[0,2]:[1,0]:[1,0]:[1,2]:[2,0]:[2,0]:[2,2]:[0,1]:[0,2]: [1,0]:[2,0]:[2,1]:[2,1]:[2,1]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:[2,0]:[2,2] ] [[0,0]:[1,1]:[0,0]:[1,0]:[1,2]:[2,0]:[1,0]:[1,0]:[0,1]:[1,2]:[2,2]:[2,1]: [1,2]:[2,1]:[0,0]:[1,0]:[0,1]:[1,2]:[2,2]:[2,1]:[1,2]:[2,1]:[0,0]:[0,0]: [0,1]:[1,1]:[2,1]:[2,2]:[0,1]:[0,1]:[1,2]:[1,2]:[2,0]:[0,1]:[0,2]:[1,0]: [1,2]:[1,2]:[2,0]:[2,2]:[1,1]:[1,2]:[2,2]:[0,1]:[1,1]:[2,1]:[2,2]:[2,2]: [0,0]:[2,1]:[2,1]:[2,2]:[0,1]:[2,2]:[0,2]:[2,1]:[0,2]:[0,1]:[2,0]:[2,2]: [1,0]:[0,1]:[1,2]:[2,0]:[0,0]:[0,1]:[1,1]:[1,0]:[0,1]:[1,0]:[2,0]:[2,1]: [2,0]:[0,1]:[2,1]:[2,1]:[2,2]:[1,2]:[1,0]:[1,2]:[0,0]:[0,1]:[0,2]:[1,1]: [1,2]:[2,0]:[2,0]:[0,1]:[1,0]:[2,0]:[2,2]:[2,2]:[2,2]:[0,2]:[1,0]:[0,2]: [2,0]:[0,0]:[0,2]:[1,1]:[2,1]:[0,1]:[1,1]:[2,2]:[0,0]:[0,0]:[2,2]:[1,0] ] [[0,1]:[2,2]:[1,0]:[0,0]:[2,0]:[0,1]:[1,2]:[0,1]:[1,2]:[1,1]:[2,2]:[1,1]: [2,2]:[2,0]:[0,0]:[0,1]:[1,2]:[1,1]:[2,2]:[1,1]:[2,2]:[2,0]:[0,0]:[0,0]: [2,1]:[2,2]:[1,0]:[1,0]:[0,1]:[0,2]:[0,0]:[0,2]:[1,1]:[2,0]:[0,1]:[1,1]: [1,1]:[1,0]:[0,0]:[2,2]:[1,1]:[0,2]:[0,0]:[1,1]:[2,0]:[2,2]:[0,2]:[0,0]: [0,0]:[0,2]:[1,2]:[0,1]:[0,1]:[0,0]:[2,2]:[0,2]:[0,2]:[0,0]:[1,2]:[2,1]: [0,0]:[2,2]:[2,2]:[2,1]:[2,1]:[2,2]:[2,1]:[2,2]:[0,1]:[0,2]:[0,2]:[2,0]: [0,1]:[0,0]:[2,1]:[0,0]:[2,0]:[1,2]:[1,2]:[0,1]:[2,2]:[1,2]:[1,0]:[1,0]: [0,2]:[2,0]:[2,0]:[0,0]:[1,2]:[0,2]:[0,0]:[1,0]:[2,1]:[2,1]:[0,1]:[0,2]: [1,1]:[1,2]:[0,2]:[1,0]:[0,1]:[1,1]:[1,0]:[1,2]:[2,2]:[1,2]:[0,2]:[0,0] ] corresponding to the solution: [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=90 weight enumerator=1 [0] 2184 [90] 3360 [91] 4144 [92] 5112 [93] 5456 [94] 5992 [95 ] 6608 [96] 6272 [97] 5768 [98] 5320 [99] 3312 [100] 2720 [101] 1680 [102] 896 [103] 168 [104] 56 [105]
q=9 k=5 n=123 d=105 (using automorphisms) ( link ) it is a [123,5,103] code with group 79619 generator matrix: [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]: [0,0]:[0,0]:[0,0]] [[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]: [0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,1]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[2,0]: [2,0]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]:[2,2]: [2,2]:[2,2]:[2,2]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:[2,1]:[2,0]:[2,0]: [2,0]:[2,0]:[2,0]:[2,0]:[2,0]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]: [1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,2]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[1,0]:[1,0]: [1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[0,2]: [0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]: [0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]] [[0,0]:[0,0]:[0,0]:[0,2]:[1,1]:[1,1]:[2,0]:[2,2]:[0,0]:[0,0]:[0,2]:[1,2]: [2,0]:[2,1]:[2,2]:[2,2]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[2,2]: [2,2]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[2,2]:[2,2]:[0,0]:[0,0]:[0,1]:[1,0]: [1,1]:[2,2]:[2,2]:[0,2]:[1,0]:[1,1]:[1,1]:[2,1]:[2,2]:[2,2]:[0,1]:[0,2]: [1,0]:[2,0]:[2,1]:[2,1]:[2,1]:[0,0]:[0,1]:[0,1]:[1,0]:[1,2]:[2,0]:[2,2]: [0,1]:[0,2]:[1,0]:[1,1]:[1,1]:[1,1]:[2,0]:[0,2]:[1,1]:[1,2]:[1,2]:[2,0]: [2,1]:[2,1]:[0,0]:[0,0]:[0,1]:[1,2]:[1,2]:[2,0]:[2,1]:[0,0]:[0,1]:[1,0]: [1,1]:[1,1]:[1,2]:[2,1]:[0,0]:[0,2]:[0,2]:[0,2]:[1,0]:[1,0]:[1,0]:[1,0]: [1,0]:[1,0]:[1,1]:[1,2]:[2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,2]:[1,2]:[1,2]: [2,0]:[0,1]:[0,1]:[0,2]:[0,2]:[1,0]:[1,1]:[1,2]:[1,0]:[1,0]:[1,0]:[1,1]: [1,2]:[2,1]:[2,2]] [[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:[1,2]:[2,0]:[1,0]:[0,0]:[2,1]:[0,1]:[0,2]: [0,1]:[2,0]:[0,2]:[2,2]:[0,0]:[0,0]:[1,0]:[1,1]:[2,2]:[1,0]:[1,0]:[1,2]: [2,1]:[1,0]:[1,1]:[2,2]:[1,0]:[1,0]:[1,2]:[2,1]:[0,1]:[2,2]:[0,2]:[2,1]: [0,2]:[0,1]:[2,0]:[2,2]:[1,0]:[0,1]:[1,2]:[2,0]:[0,0]:[0,1]:[1,0]:[0,2]: [2,0]:[0,0]:[0,2]:[1,1]:[2,1]:[0,1]:[1,1]:[2,2]:[0,0]:[0,0]:[2,2]:[1,0]: [2,1]:[2,2]:[2,2]:[0,0]:[2,1]:[2,1]:[2,2]:[2,0]:[1,2]:[1,1]:[2,0]:[2,0]: [2,1]:[2,2]:[1,2]:[2,0]:[2,2]:[0,2]:[2,0]:[1,0]:[1,0]:[1,1]:[0,0]:[1,2]: [1,0]:[2,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[2,1]:[0,1]:[2,0]:[2,0]:[0,0]: [0,1]:[1,2]:[2,0]:[2,1]:[1,2]:[0,0]:[0,2]:[0,1]:[0,0]:[0,0]:[0,1]:[1,1]: [2,1]:[0,1]:[2,0]:[1,0]:[1,2]:[0,2]:[1,2]:[1,2]:[0,0]:[0,1]:[0,1]:[2,0]: [2,0]:[2,0]:[0,1]] [[0,0]:[0,1]:[2,2]:[1,0]:[0,0]:[2,0]:[0,1]:[1,2]:[0,0]:[2,2]:[1,0]:[2,0]: [1,2]:[2,0]:[1,0]:[0,2]:[0,0]:[0,0]:[2,1]:[0,1]:[0,1]:[0,1]:[2,2]:[1,1]: [1,2]:[2,1]:[0,1]:[0,1]:[0,1]:[2,2]:[1,1]:[1,2]:[0,1]:[0,0]:[2,2]:[0,2]: [0,2]:[0,0]:[1,2]:[2,1]:[0,0]:[2,2]:[2,2]:[2,1]:[2,1]:[2,2]:[0,1]:[0,2]: [1,1]:[1,2]:[0,2]:[1,0]:[0,1]:[1,1]:[1,0]:[1,2]:[2,2]:[1,2]:[0,2]:[0,0]: [2,2]:[0,2]:[0,0]:[0,0]:[0,2]:[1,2]:[0,1]:[2,0]:[0,1]:[0,0]:[1,0]:[2,2]: [1,2]:[0,1]:[0,0]:[2,0]:[1,0]:[1,1]:[0,0]:[1,2]:[1,0]:[2,0]:[0,1]:[0,0]: [0,1]:[1,2]:[1,0]:[2,2]:[1,1]:[2,1]:[2,2]:[1,0]:[1,0]:[1,0]:[1,2]:[1,2]: [1,2]:[2,1]:[0,2]:[2,1]:[2,0]:[1,1]:[0,2]:[2,1]:[2,0]:[0,1]:[0,2]:[0,1]: [2,2]:[0,2]:[2,2]:[0,0]:[2,1]:[2,2]:[1,2]:[2,0]:[0,0]:[0,2]:[1,1]:[1,1]: [2,2]:[0,0]:[2,0]] corresponding to the solution: [0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=103 weight enumerator=1 [0] 1848 [103] 3976 [104] 3752 [105] 4872 [106] 4704 [107] 5008 [108] 5688 [109] 6272 [110] 6608 [111] 5096 [112] 3584 [113] 3472 [114] 1968 [115] 1192 [116] 896 [117] 112 [118]