new codes from 250908
- binary: 2 improvements + 2 derived
- ternary: 3 improvements + 5 derived
- q=4: 1 improvement + 1 derived
- q=5:
- q=7: 1 optimal + 3 improvements + 1 derived
- q=9: 3 improvement + 3 derived
binary q=2
q=2 k=12 n=148 d=66 (extension of a code with automorphisms) ( link ) generator matrix: 0000001111111111111100000000111111111111000000000111111111111000000011111111111111000000000001111111111000000000001111111111000000000011111111110110 0000110000000011111100000011000000111111000111111000000111111000111100000011111111000001111110000111111000000000110000111111000000111100000011110000 0111110000000100111101111100001111000011001001111000011000011000001100011100000011011110011110001000011000001111110001001111001111001101111100110011 0000010011111100011110001111000000000101011010111011101000101001111111100001111101101110100000011001101011110011010011000001010011110110000101001010 1000110100111001000110000111110011011101001100000100101001011010110100101100011100110000100010000000110111110111111100110000100100011101111101110110 1001011100011011000100010111110101101011010111011011001010011011011111110010100111110110101100000000111000010001101100000010101011110110011101111010 0011010101111111101110110101001110100101110011011111111110101011110111010110000000001010010110101010110000000000100110010101111011001001111010111010 0100111110001000001101001000110101000011000101000001001100111001110101000001101011000000100101001001010000110000110110101101101111010101111010010110 0001000011010010100000010010110010101100011100111110110001001100100110101001010011101100100010010011110000100110111110000101010100000110011111101100 1011111010000010001000001100010001101101100011001110100100000100010010010111011010101011100101110110111000001100110000101000101001110000101011000110 0000111001011110100011011011110011001010011001100110101000000011111001100001001001011000001000000101001000110001001101110011001001111101000000111100 0011101000110111000110000100110011100010001011111100101110100100111101000000111010011011110011110010111001101001101001110010011010101010011000111010 mindist=66 weight enumerator=1 [0] 778 [66] 377 [68] 228 [70] 93 [72] 1150 [74] 369 [76] 120 [78] 27 [80] 742 [82] 147 [84] 36 [86] 7 [88] 18 [90] 3 [92]
q=2 k=12 n=151 d=68 (using automorphisms) ( link ) it is a [151,12,68] code with group 18737 generator matrix: 0000000111111111111110000000001111111111110000000001111111111110000000111111111111110000000000011111111110000000000011111111110000000000011111111110110 0000011000000001111110000000110000001111110001111110000001111110001111000000111111110000011111100001111110000000001100001111110000000111100000011110000 0011111000000010011110111111000011110000110010011110000110000110000011000111000000110111100111100010000110000011111100010011110011111001101111100110011 0000001001111110001111000111110000000001010110101110111010001010011111111000011111011011101000000110011010111100110100110000010100111110110000101001010 1100011010011100100011000001111100110111010011000001001010010110101101001011000111001100001000100000001101111101111111001100001001001011101111101110110 0100101110001101100010001001111101011010110101110110110010100110110111111100101001111101101011000000001110000100011011000000101010110110110011101111010 0001101010111111110111011011010011101001011100110111111111101010111101110101100000000010100101101010101100000000001001100101011110111001001111010111010 1010011111000100000110100100001101010000110001010000010011001110011101010000011010110000001001010010010100001100001101101011011011111010101111010010110 0000100001101001010000001000101100101011000111001111101100010011001001101010010100111011001000100100111100001001101111100001010101000000110011111101100 1101111101000001000100000101000100011011011000110011101001000001000100100101110110101010111001011101101110000011001100001010001010011110000101011000110 1000011100101111010001101100111100110010100110011001101010000000111110011000010010010110000010000001010010001100010011011100110010011111101000000111100 0001110100011011100011000001001100111000100010111111001011101001001111010000001110100110111100111100101110011010011010011100100110100101010011000111010 corresponding to the solution: [0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1] mindist=68 weight enumerator=1 [0] 1155 [68] 321 [72] 1519 [76] 147 [80] 889 [84] 43 [88] 21 [92]
ternary q=3
q=3 k=10 n=176 d=105 (using automorphisms) ( link ) it is a [176,10,105] code with group 125948 generator matrix: 00000000001111111111110000000000111111111111000000000011111111111100001111111111111111110000111111111111111111000000011111111111111100000001111111111111110000000000111111111111 00000011110000111122220000111111000000222222000011111100000011122211110000111122222222220111000111111111222222000001100000111112222200000110000000000011220111111111000111111222 00000101111112012200020111012222012222012222001101111200222212200201120011001200000111221001122000012222011122000110000122011120012201111000000111112212120011111112002111122122 00111020221220000200111000110002210122000112110220012012012200122210011211121000112012021110102011210222001201011020022212101220101100012000112000221220111000111221122011200201 01122021010010121100000022020120011122210221122120110001101220102210201212121212001110000121222202012111022112112022212222020111011210212111121112020120220000222122020000112210 01000002001202222122020002002122111002012010112011010020011121211020020210001012020021212222122201121022220202011120100021011112101111102111020121222000201211002012210112221000 00212210201220210202122201222221102022210221020111012111210000212202100220212221001011222001002020112012122221020121110202110201120222022220001010211221100001121200211110111102 01102122021200212121001200210101112201201110000100021202202120110111021011001012201000020211120000112021222101220111201022212120200021000120110012102020022112210001201122102100 00212011010012220212212101021120001002112122200011210201101221011211101201002220110120212220211201100121121221212100011110001122210202010222200010121001020101112010222121021002 12120221022112010111112000122102021001120020012102021101122210102020221021100011121020112200220010121112101021022200010121010222121211121122112022202100210012022101021021120222 corresponding to the solution: [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0] mindist=105 weight enumerator=1 [0] 2640 [105] 3916 [108] 7656 [111] 8932 [114] 9724 [117] 10340 [120] 8448 [123] 4488 [126] 2200 [129] 572 [132] 132 [135]
q=3 k=10 n=196 d=117 (using automorphisms) ( link ) it is a [196,10,117] code with group 107876 generator matrix: 0000000001111111111111111100000011111111111111111111000000000111111111111111110000000001111111111111111100000000011111111111111111000000111111111111111111110000000000001111111111111100000001111111 0001111110000011111122222211111100000111111111222222000000111001111112222222220011111110000001111111222200000111100000011112222222011111000000000011111222220001111111110000000011122201111110001110 0110011221122200022200022201122200022000011122000012011111022110000220001222220100012220001120111222011200111000200112202220000122001111000011112200112022220110000111220000001212201210001120010021 0012211221201112201211200201201100201001212202000102101222012111112020021012221200110110122221012122011201000002002020111220011111100112112200011202020201111000111001000111220220101021222210010202 0001212120121221201202212111211112220110200012112022122012010110021201202110021211001011011102102002202111012220022110021001201012020120010212220200022200010012112021010012221001120120020120200012 0201001101112220110120202210211222210221110020000022200110120120011202022221201000102221220200211221200220001000011210111021101010200102212011101022102200112211010022112001122001110020101210110221 0110101112111112000120022222021212100022001200121111220221122000002001202120020002210220120102211202122220201120020122211222211000022122020210010121202202120210211110111201002202202102212002022210 0020110110021000021021101220212220220001122011220010210112122021211100212022021111120012010020000001211011210111000102000201001210002110111120211002011122002002010201100120000120212212220010012212 0212101112020100020110000201001000002020101121211120022102221120111120011201212010221020201212210001201200010111112012221221020002021111011200210021011022102101212221102202011110011200022010022201 1222210201112102021210221201111111002222220011112211120010022010111111111022101002002110100011022210202120202112012110100012102111100222110210001122222001120220102021002022120210100211211202020200 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1] mindist=117 weight enumerator=1 [0] 1638 [117] 4056 [120] 5174 [123] 8372 [126] 9152 [129] 10244 [132] 8918 [135] 6214 [138] 3458 [141] 1404 [144] 286 [147] 78 [150 ] 52 [153] 2 [183]
q=3 k=10 n=200 d=120 (using automorphisms) ( link ) it is a [200,10,120] code with group 79016 generator matrix: 00111111111111111111000000001111111111110000011111111111111100000111111111111111000001111111111111110000000011111111111100000000111111111111000000001111111111110000000011111111111100000000111111111111 01000011111112222222111111110000011111220001100000111112222200111000111111222222011110000111122222220011111100011111122200000111000000111222011111110000111122220001111100000112222200111111000000111111 10001201112220111222011111220011200112220110211222001120112211022001011222011112101220122011200000120101111200201122212201111012000112001022100222220012011200021110012211122120001111001222001222011222 12112210010120112012200122110111202222021220222011010220122222112011011022001222201112002001000222221110012201201111210200022002012000122001112000122220011112210021201111202200020201022011012000122022 01012121110002111112012212112000100022020112222012220220220212000021111111202122022222111201111222221000112022021211111111212102020021020002100112100120111211110010221102112120211210112112201011012202 12112020111011122002000101011212201022022012002201202120010220120012012111002001120020120220001001001101101221210000002100112111121102211010202020112100111020100200001220202001001112100122202212221100 02202011122112110022202102010200122010222001222010100220021202212212001102222210221012201010222221100110020202021022011120200022020211220110202000122000200221000212222122202111221200212011110020011210 22022121021012102220120022201002012000000102120220121112012111010022000101100200112202010211120121011121012200202211121010212011110212000200000212100100111112011000120121112021002012000201122121111102 10012112202000102202111200202200111112222010002222121101010010200012000101111112201211212210112122210212022200010201220122000100011021120121111111202112002201010012101102120102200220011221002212201221 11002211200100210120020222002110021102021021220012101001020210122021220211100111012012010122220200100022002002022102121211001220021020201022112112202201020022221210210000000212010011122121122202010002 corresponding to the solution: [0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0] mindist=120 weight enumerator=1 [0] 1920 [120] 3920 [123] 6640 [126] 7880 [129] 9680 [132] 9440 [135] 8680 [138] 5880 [141] 3280 [144] 1280 [147] 248 [150] 160 [153] 40 [156]
q=4
q=4 k=8 n=35 d=20 (using automorphisms) ( link ) it is a [35,8,20] code with group 125582 generator matrix: [[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]] [[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]: [1,0]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[1,0]: [1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[1,1]] [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,1]: [1,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,0]:[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[1,0]: [1,1]:[0,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,1]] [[0,0]:[0,1]:[1,0]:[1,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,1]:[1,1]: [1,1]:[0,1]:[1,1]:[1,1]:[1,0]:[1,0]:[1,1]:[1,0]:[1,1]:[1,1]:[1,0]:[1,1]: [1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,0]:[0,1]:[0,0]] [[0,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[0,1]: [1,0]:[0,0]:[0,0]:[1,1]:[1,0]:[0,1]:[0,0]:[1,1]:[1,0]:[1,0]:[0,0]:[0,0]: [0,0]:[1,1]:[1,1]:[0,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,0]:[0,1]] [[0,0]:[0,1]:[1,0]:[1,0]:[1,1]:[1,0]:[0,0]:[0,0]:[0,1]:[0,0]:[0,0]:[1,0]: [0,0]:[1,1]:[0,1]:[1,0]:[1,1]:[0,1]:[1,0]:[1,1]:[1,0]:[0,1]:[0,0]:[1,0]: [0,1]:[1,1]:[0,1]:[1,0]:[1,1]:[0,0]:[0,1]:[0,0]:[0,0]:[0,0]:[1,0]] [[0,0]:[1,1]:[1,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,1]:[1,0]:[0,0]:[1,0]:[1,0]: [1,1]:[1,1]:[1,1]:[0,1]:[1,0]:[0,1]:[0,0]:[1,1]:[1,0]:[0,0]:[1,1]:[0,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,0]:[1,0]:[1,1]:[1,0]:[1,1]:[1,0]] [[1,1]:[1,0]:[0,1]:[1,0]:[1,1]:[1,0]:[0,1]:[1,0]:[1,0]:[0,0]:[1,0]:[1,0]: [1,1]:[0,1]:[0,0]:[0,1]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,1]:[1,1]: [0,1]:[1,1]:[1,0]:[0,1]:[0,0]:[0,0]:[1,0]:[0,1]:[0,0]:[0,0]:[0,0]] corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=20 weight enumerator=1 [0] 1950 [20] 4110 [22] 14370 [24] 18750 [26] 17370 [28] 7770 [30 ] 1125 [32] 90 [34]
q=7
q=7 k=4 n=27 d=21 optimal (using automorphisms) ( link ) it is a [27,4,21] code with group 125969 generator matrix: 000000111111111111111111111 001111011233344456256026135 010236012133434645562260351 100645021134334564625602513 corresponding to the solution: [1,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ] mindist=21 weight enumerator=1 [0] 456 [21] 738 [22] 276 [23] 198 [24] 378 [25] 354 [26]
q=7 k=5 n=47 d=36 (using automorphisms) ( link ) it is a [47,5,36] code with group 59606 generator matrix: 11111101111100111100111111011111111111111111111 14556615566601022611345625102245334455001444334 03063523323610504345366266664625561114120002262 55010431320252414263244666543560600421021346632 61161051606426505352560100161014152026663042514 corresponding to the solution: [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=36 weight enumerator=1 [0] 1092 [36] 1458 [37] 1782 [38] 2022 [39] 2142 [40] 2820 [41 ] 2112 [42] 1938 [43] 900 [44] 534 [45] 6 [47]
q=7 k=5 n=53 d=41 (using automorphisms) ( link ) it is a [53,5,41] code with group 59606 generator matrix: 11111100111101111111111111111101111101111111110011110 14556611356611234613345601135501445503334541241103341 03063503535663160641132100425610361211232166512461513 55010411426415326051263655362310530511223464612433102 61161042152045505461341004546650334136243203353033141 corresponding to the solution: [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] mindist=41 weight enumerator=1 [0] 1080 [41] 1566 [42] 1728 [43] 1764 [44] 2112 [45] 2760 [46 ] 1854 [47] 1716 [48] 1338 [49] 810 [50] 78 [51]
q=7 k=5 n=96 d=77 (using automorphisms) ( link ) it is a [96,5,77] code with group 59606 generator matrix: 111111011111111111110111110111110111110011111111111111111111111111110111111111111111111110111111 145566160023560045661123461113461235660105560145660113550023450144551112354000334023344131000132 030635062230660243366316061131240035241313303324000042565660141245124016116016126261404544115121 550104062660534462221532606300352034051161650126345536230506336650224103126140605614355044026342 611610004526511322014550542243645502434122055561040454664045510362356543050660323431505611014620 corresponding to the solution: [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] mindist=77 weight enumerator=1 [0] 1140 [77] 1662 [78] 1332 [79] 1398 [80] 1620 [81] 1944 [82 ] 1728 [83] 1356 [84] 1692 [85] 900 [86] 864 [87] 540 [88] 324 [89 ] 186 [90] 36 [91] 36 [92] 48 [93]
q=9
q=9 k=5 n=101 d=84 (using automorphisms) ( link ) it is a [101,5,84] code with group 78375 generator matrix: [[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]] [[0,0]:[0,1]:[0,1]:[0,2]:[1,0]:[1,1]:[2,0]:[2,0]:[2,2]:[2,2]:[1,1]:[1,1]: [0,0]:[0,0]:[0,2]:[0,2]:[1,2]:[2,1]:[2,2]:[2,2]:[1,1]:[1,1]:[1,1]:[1,1]: [0,1]:[1,0]:[1,0]:[1,2]:[2,1]:[2,2]:[1,1]:[1,1]:[0,1]:[1,0]:[1,1]:[1,2]: [2,0]:[2,1]:[2,2]:[2,2]:[1,1]:[1,1]:[0,1]:[0,1]:[0,2]:[1,0]:[1,2]:[1,2]: [2,1]:[2,2]:[0,1]:[0,2]:[1,0]:[1,0]:[1,0]:[1,2]:[2,0]:[2,2]:[2,2]:[2,2]: [0,0]:[0,2]:[0,2]:[0,2]:[1,1]:[1,2]:[2,0]:[2,1]:[2,1]:[2,2]:[1,1]:[0,0]: [0,1]:[1,0]:[1,1]:[1,1]:[1,1]:[1,2]:[2,1]:[2,2]:[0,0]:[0,0]:[0,2]:[0,2]: [1,0]:[1,2]:[2,0]:[2,0]:[2,1]:[2,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]: [0,1]:[2,1]:[2,1]:[2,1]:[1,2]] [[0,0]:[0,1]:[1,0]:[1,2]:[0,0]:[1,1]:[0,1]:[1,0]:[1,0]:[2,1]:[1,0]:[2,0]: [0,2]:[2,0]:[0,2]:[1,0]:[2,0]:[1,2]:[0,2]:[2,2]:[1,0]:[1,0]:[2,0]:[2,2]: [0,1]:[1,1]:[2,1]:[1,0]:[1,1]:[2,0]:[0,0]:[0,0]:[1,2]:[0,0]:[2,1]:[0,1]: [1,2]:[0,0]:[0,0]:[2,0]:[0,0]:[2,2]:[0,0]:[0,2]:[1,2]:[0,1]:[1,0]:[2,1]: [2,2]:[1,2]:[2,0]:[2,1]:[0,0]:[1,1]:[1,2]:[1,2]:[1,2]:[0,1]:[0,2]:[1,0]: [1,1]:[0,2]:[1,0]:[2,2]:[0,2]:[0,1]:[1,0]:[0,0]:[2,1]:[0,1]:[1,2]:[2,0]: [2,0]:[1,1]:[0,0]:[1,1]:[2,0]:[0,2]:[1,1]:[0,0]:[0,0]:[0,2]:[0,2]:[2,1]: [2,0]:[1,0]:[0,1]:[2,2]:[0,2]:[2,2]:[0,0]:[1,0]:[1,0]:[1,1]:[2,2]:[1,0]: [1,2]:[0,0]:[0,1]:[2,1]:[0,0]] [[0,0]:[0,2]:[0,1]:[0,2]:[0,0]:[1,1]:[0,0]:[2,0]:[1,1]:[2,2]:[2,1]:[0,0]: [2,0]:[2,1]:[2,2]:[0,2]:[2,1]:[1,1]:[2,1]:[0,0]:[0,2]:[1,2]:[0,2]:[0,0]: [1,0]:[0,0]:[2,0]:[0,2]:[0,2]:[2,0]:[0,1]:[1,1]:[0,1]:[1,2]:[2,2]:[1,0]: [1,1]:[0,2]:[0,2]:[1,1]:[0,0]:[0,2]:[2,2]:[1,1]:[1,1]:[1,0]:[1,0]:[0,0]: [2,2]:[2,1]:[0,2]:[0,1]:[0,2]:[1,2]:[1,2]:[1,0]:[2,2]:[2,2]:[0,1]:[2,0]: [1,2]:[2,1]:[2,1]:[1,2]:[0,0]:[2,0]:[0,0]:[2,1]:[2,0]:[1,2]:[1,2]:[1,2]: [1,2]:[2,2]:[2,2]:[1,0]:[1,0]:[0,2]:[1,0]:[2,1]:[0,0]:[1,1]:[0,1]:[2,1]: [2,2]:[0,0]:[0,2]:[1,0]:[0,0]:[1,1]:[2,2]:[0,1]:[2,2]:[1,2]:[1,2]:[2,1]: [0,1]:[1,0]:[0,1]:[2,2]:[1,2]] [[1,1]:[2,0]:[0,0]:[1,0]:[1,2]:[2,2]:[0,0]:[2,2]:[0,2]:[0,1]:[0,2]:[0,0]: [0,1]:[2,0]:[2,1]:[1,1]:[0,0]:[2,2]:[2,2]:[1,0]:[1,2]:[1,1]:[0,0]:[2,2]: [0,2]:[1,1]:[1,2]:[0,2]:[2,2]:[1,1]:[2,2]:[2,2]:[0,0]:[0,0]:[2,2]:[0,1]: [0,2]:[2,2]:[2,1]:[2,0]:[0,0]:[2,0]:[0,2]:[2,1]:[1,2]:[1,1]:[0,0]:[1,2]: [1,2]:[2,0]:[1,0]:[1,0]:[2,2]:[2,2]:[0,2]:[1,1]:[0,2]:[1,1]:[0,0]:[2,1]: [0,0]:[2,0]:[2,1]:[2,1]:[0,0]:[1,1]:[1,2]:[1,2]:[2,0]:[1,1]:[1,2]:[1,1]: [1,0]:[1,0]:[0,0]:[2,2]:[2,0]:[1,2]:[2,1]:[2,2]:[0,0]:[0,0]:[2,1]:[0,2]: [1,2]:[2,1]:[0,2]:[2,1]:[2,2]:[0,2]:[2,1]:[0,1]:[0,1]:[1,2]:[1,1]:[0,0]: [0,1]:[2,0]:[0,2]:[2,1]:[0,1]] corresponding to the solution: [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,1,0,0,0,0,0,0,0] mindist=84 weight enumerator=1 [0] 2320 [84] 3520 [85] 4440 [86] 5480 [87] 6080 [88] 5320 [89 ] 7040 [90] 6240 [91] 5920 [92] 4840 [93] 4360 [94] 1640 [95] 1280 [96] 320 [97] 240 [98] 8 [101]
q=9 k=5 n=116 d=97 (using automorphisms) ( link ) it is a [116,5,97] code with group 80103 generator matrix: [[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]: [0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]] [[0,0]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,2]:[0,2]:[0,2]:[1,2]:[1,2]: [1,2]:[2,0]:[2,0]:[2,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,2]:[0,2]:[0,2]:[1,0]: [1,1]:[1,2]:[2,0]:[2,0]:[2,1]:[2,1]:[2,2]:[2,2]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,2]:[2,0]:[2,0]:[2,1]:[2,2]:[2,2]: [1,1]:[1,1]:[0,0]:[0,0]:[0,2]:[0,2]:[1,0]:[1,0]:[1,1]:[1,2]:[2,0]:[2,1]: [2,1]:[2,1]:[2,2]:[2,2]:[0,0]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,2]: [1,0]:[1,1]:[1,2]:[1,2]:[2,0]:[2,2]:[2,2]:[2,2]:[0,2]:[0,2]:[1,0]:[1,0]: [1,1]:[1,1]:[1,2]:[1,2]:[1,2]:[1,2]:[2,0]:[2,0]:[2,0]:[2,1]:[2,1]:[2,2]: [0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,2]:[0,2]:[0,2]:[1,0]:[1,1]:[1,1]:[1,2]: [1,2]:[2,1]:[2,1]:[2,2]:[2,1]:[2,2]:[1,2]:[1,0]] [[0,0]:[1,0]:[1,1]:[0,2]:[1,0]:[1,1]:[1,2]:[0,1]:[1,2]:[2,0]:[0,1]:[0,2]: [1,1]:[1,0]:[1,0]:[1,1]:[2,0]:[1,2]:[0,0]:[0,2]:[0,1]:[1,2]:[2,0]:[0,2]: [1,2]:[1,2]:[2,0]:[2,0]:[0,0]:[1,2]:[2,2]:[2,2]:[0,1]:[0,2]:[1,2]:[2,0]: [2,0]:[0,0]:[0,2]:[0,2]:[2,0]:[1,0]:[2,1]:[0,0]:[1,0]:[2,2]:[2,1]:[2,2]: [0,0]:[1,2]:[0,2]:[2,0]:[1,1]:[2,2]:[1,0]:[1,1]:[1,0]:[0,1]:[0,0]:[2,0]: [2,0]:[2,1]:[1,0]:[2,0]:[1,1]:[2,0]:[0,0]:[2,1]:[2,2]:[0,1]:[1,1]:[1,1]: [2,2]:[2,0]:[0,1]:[0,2]:[0,2]:[1,1]:[2,0]:[2,0]:[1,0]:[1,2]:[0,2]:[1,2]: [2,0]:[2,2]:[0,0]:[1,0]:[1,1]:[2,0]:[1,0]:[1,0]:[2,2]:[0,0]:[1,2]:[1,1]: [1,1]:[0,1]:[0,1]:[0,2]:[2,1]:[1,1]:[1,1]:[2,1]:[2,1]:[0,2]:[1,1]:[1,1]: [2,2]:[0,2]:[2,2]:[1,1]:[1,0]:[0,0]:[2,2]:[2,2]] [[0,0]:[1,0]:[2,0]:[1,2]:[0,0]:[1,2]:[2,1]:[2,0]:[0,2]:[0,2]:[0,1]:[0,2]: [1,2]:[0,2]:[1,0]:[1,2]:[2,1]:[2,2]:[0,2]:[2,0]:[0,0]:[1,0]:[2,0]:[2,1]: [0,1]:[2,0]:[0,0]:[2,0]:[0,1]:[1,0]:[2,1]:[2,2]:[1,1]:[2,0]:[0,2]:[1,0]: [2,2]:[0,1]:[0,0]:[1,1]:[1,1]:[0,1]:[2,1]:[0,0]:[2,0]:[1,1]:[1,0]:[2,2]: [2,2]:[0,1]:[2,0]:[1,2]:[1,0]:[2,1]:[1,1]:[0,1]:[0,1]:[2,1]:[1,2]:[0,2]: [1,2]:[2,0]:[2,0]:[2,1]:[1,0]:[0,0]:[0,2]:[0,2]:[0,1]:[2,2]:[1,0]:[0,2]: [1,2]:[2,0]:[0,0]:[0,1]:[1,1]:[2,2]:[1,2]:[2,0]:[0,1]:[0,1]:[1,0]:[1,2]: [0,2]:[2,1]:[0,0]:[0,1]:[1,1]:[1,2]:[1,1]:[2,1]:[2,2]:[2,2]:[1,0]:[1,1]: [0,0]:[0,1]:[1,2]:[1,2]:[2,0]:[2,0]:[2,1]:[1,0]:[1,2]:[2,1]:[0,1]:[2,2]: [0,1]:[0,1]:[1,2]:[0,2]:[2,1]:[1,0]:[1,0]:[1,0]] [[1,1]:[2,1]:[2,0]:[2,1]:[1,2]:[0,1]:[1,2]:[2,1]:[0,2]:[1,2]:[1,0]:[1,0]: [0,2]:[0,1]:[2,2]:[0,0]:[1,1]:[1,0]:[2,2]:[0,1]:[1,0]:[0,2]:[2,2]:[2,0]: [0,0]:[1,2]:[0,0]:[0,1]:[0,0]:[2,2]:[2,0]:[2,2]:[1,1]:[2,0]:[0,0]:[1,1]: [0,0]:[1,0]:[1,1]:[2,2]:[0,1]:[1,1]:[0,0]:[2,0]:[1,0]:[2,1]:[2,0]:[2,0]: [0,1]:[2,2]:[2,2]:[2,1]:[0,2]:[1,0]:[1,1]:[1,2]:[2,2]:[0,1]:[0,0]:[2,0]: [2,0]:[1,0]:[2,2]:[1,2]:[0,2]:[2,2]:[2,0]:[0,0]:[0,0]:[2,2]:[2,1]:[2,0]: [1,2]:[2,0]:[1,0]:[2,1]:[0,0]:[2,1]:[1,2]:[0,1]:[1,1]:[1,1]:[1,0]:[1,0]: [2,1]:[0,1]:[0,0]:[2,1]:[2,2]:[0,2]:[2,1]:[0,0]:[1,2]:[1,2]:[2,0]:[0,1]: [1,1]:[1,0]:[2,1]:[1,2]:[1,2]:[2,2]:[1,0]:[2,0]:[2,0]:[2,1]:[2,1]:[1,0]: [1,0]:[2,0]:[2,0]:[2,0]:[2,2]:[2,1]:[2,2]:[1,0]] corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0] mindist=97 weight enumerator=1 [0] 2480 [97] 2960 [98] 3904 [99] 5376 [100] 5024 [101] 6272 [102 ] 7552 [103] 4608 [104] 4864 [105] 6768 [106] 2560 [107] 2944 [108 ] 1792 [109] 1536 [110] 384 [111] 8 [112] 16 [113]
q=9 k=5 n=127 d=107 (extension of a code with automorphisms) ( link ) generator matrix: [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]] [[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[0,2]:[1,0]: [1,0]:[1,1]:[1,1]:[1,2]:[1,2]:[2,0]:[2,1]:[2,2]:[1,1]:[1,1]:[1,1]:[0,1]: [0,2]:[1,0]:[1,1]:[1,1]:[1,2]:[1,2]:[2,0]:[2,0]:[2,0]:[2,1]:[2,1]:[2,1]: [2,2]:[2,2]:[2,2]:[2,2]:[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[0,2]:[0,2]: [1,0]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,2]:[2,0]:[2,0]:[2,1]:[2,2]:[2,2]: [0,0]:[0,0]:[0,0]:[0,0]:[0,2]:[0,2]:[0,2]:[0,2]:[1,0]:[1,0]:[1,0]:[2,0]: [2,0]:[2,0]:[2,1]:[2,1]:[2,2]:[2,2]:[2,2]:[2,2]:[1,1]:[0,0]:[0,0]:[0,1]: [0,1]:[0,2]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,2]:[1,2]:[2,0]:[2,0]:[2,1]: [2,1]:[2,2]:[2,2]:[2,2]:[0,0]:[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[0,2]: [1,0]:[1,0]:[1,1]:[1,1]:[1,2]:[1,2]:[2,0]:[2,0]:[2,0]:[2,1]:[2,1]:[2,2]: [0,2]:[0,2]:[0,2]:[0,2]:[0,2]:[1,1]:[0,0]] [[0,0]:[0,1]:[0,2]:[1,0]:[1,2]:[1,2]:[1,2]:[2,2]:[1,0]:[2,0]:[0,2]:[1,0]: [1,2]:[2,0]:[2,1]:[0,1]:[0,2]:[1,2]:[2,0]:[0,2]:[0,0]:[2,0]:[2,2]:[1,1]: [0,1]:[1,0]:[1,0]:[1,2]:[0,0]:[0,1]:[0,0]:[0,2]:[1,0]:[0,0]:[0,1]:[2,1]: [0,0]:[0,1]:[0,1]:[2,2]:[1,0]:[0,0]:[2,0]:[0,1]:[1,2]:[2,0]:[1,1]:[2,1]: [0,0]:[0,1]:[0,0]:[0,1]:[1,0]:[2,0]:[0,1]:[0,1]:[2,1]:[0,2]:[1,0]:[2,2]: [0,0]:[0,2]:[2,0]:[2,0]:[1,0]:[1,2]:[1,2]:[2,2]:[0,1]:[0,2]:[2,1]:[0,0]: [0,0]:[2,1]:[0,0]:[1,1]:[1,0]:[1,1]:[2,1]:[2,1]:[2,2]:[0,0]:[0,1]:[0,2]: [1,2]:[1,0]:[2,2]:[0,1]:[1,0]:[1,2]:[1,2]:[2,0]:[2,1]:[0,2]:[1,1]:[0,0]: [1,0]:[0,0]:[0,2]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[0,1]:[2,0]:[2,1]:[2,0]: [1,1]:[1,2]:[0,0]:[0,0]:[1,0]:[2,1]:[1,0]:[1,2]:[2,0]:[2,0]:[2,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,2]:[2,1]] [[0,0]:[1,2]:[2,2]:[1,2]:[0,2]:[1,0]:[1,1]:[0,2]:[2,1]:[0,2]:[1,0]:[2,0]: [2,1]:[0,1]:[0,1]:[1,1]:[1,0]:[2,2]:[0,2]:[1,1]:[0,1]:[1,2]:[0,2]:[1,1]: [0,0]:[2,0]:[1,2]:[0,1]:[2,0]:[0,0]:[0,0]:[1,0]:[0,1]:[1,2]:[0,2]:[1,2]: [0,1]:[0,1]:[2,0]:[1,0]:[2,0]:[2,1]:[0,2]:[1,2]:[1,1]:[0,0]:[0,0]:[0,0]: [1,1]:[1,1]:[1,2]:[0,2]:[0,2]:[1,0]:[0,1]:[1,2]:[1,0]:[2,0]:[2,0]:[1,0]: [1,0]:[1,0]:[0,1]:[2,0]:[0,0]:[2,0]:[2,2]:[1,0]:[0,0]:[2,2]:[0,0]:[1,0]: [1,2]:[0,1]:[0,1]:[2,2]:[0,2]:[2,0]:[0,0]:[2,1]:[2,2]:[1,1]:[0,2]:[1,1]: [0,0]:[2,1]:[1,2]:[0,0]:[2,0]:[1,1]:[1,2]:[0,2]:[1,2]:[2,0]:[0,0]:[2,0]: [0,1]:[2,2]:[2,1]:[2,1]:[2,0]:[1,0]:[2,2]:[0,2]:[2,1]:[2,2]:[2,0]:[2,2]: [1,0]:[2,0]:[0,2]:[2,2]:[1,0]:[2,0]:[0,0]:[0,1]:[2,2]:[0,0]:[0,0]:[1,0]: [0,2]:[1,0]:[2,0]:[2,1]:[2,2]:[1,2]:[0,1]] [[1,1]:[0,2]:[1,2]:[1,0]:[0,1]:[1,1]:[0,1]:[0,1]:[2,2]:[2,2]:[2,2]:[0,0]: [0,1]:[1,1]:[1,1]:[1,0]:[0,1]:[2,2]:[0,2]:[1,1]:[1,1]:[1,1]:[2,0]:[0,1]: [1,0]:[1,2]:[1,0]:[1,1]:[2,1]:[2,0]:[2,2]:[2,1]:[1,2]:[2,1]:[0,0]:[1,2]: [1,2]:[2,2]:[1,0]:[2,0]:[0,2]:[0,1]:[1,0]:[0,0]:[0,0]:[2,1]:[1,1]:[0,1]: [0,1]:[2,0]:[2,2]:[2,0]:[1,1]:[0,2]:[2,0]:[2,1]:[2,0]:[0,1]:[1,2]:[1,1]: [2,0]:[2,2]:[1,0]:[0,1]:[2,2]:[2,1]:[1,1]:[1,2]:[1,1]:[0,0]:[0,0]:[2,2]: [0,0]:[1,1]:[2,2]:[0,0]:[2,0]:[0,2]:[2,1]:[2,2]:[1,0]:[1,0]:[0,1]:[2,1]: [1,0]:[1,1]:[2,0]:[0,1]:[2,1]:[0,0]:[0,1]:[1,0]:[2,2]:[0,0]:[2,0]:[0,1]: [2,1]:[1,1]:[2,0]:[2,1]:[1,0]:[0,0]:[1,0]:[2,2]:[0,0]:[2,1]:[1,2]:[0,2]: [1,0]:[1,0]:[1,2]:[0,0]:[1,1]:[1,0]:[0,2]:[0,2]:[1,2]:[2,1]:[0,1]:[2,1]: [1,0]:[0,2]:[2,2]:[2,1]:[2,0]:[0,2]:[1,2]] mindist=107 weight enumerator=1 [0] 3632 [107] 4504 [108] 1224 [109] 8264 [110] 6496 [111] 1440 [112] 8048 [113] 7456 [114] 2016 [115] 6184 [116] 4048 [117] 1008 [118] 2992 [119] 1424 [120] 144 [121] 40 [122] 128 [123]