new codes from 311008
- binary: 4 improvements + 6 derived
- ternary: 9 improvements + 12 derived
- q=4: 1 improvements + 1 derived
- q=5: 1 improvement
- q=7: 12 improvements + 3 derived
- q=8:
- q=9:
binary q=2
q=2 k=13 n=168 d=74 (using automorphisms) ( link ) code with group 126446 generator matrix: 000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111000000000001111111111000000011111111111111 000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111000000011110000001111000111100000000111111 001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111000011100110001110011011011100011111001111 010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011000000001010010010101111000011100111000001 010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101000100010000010000100111001100100001010110 011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011001100000110110101101010100101011010010 011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101100110111100100100010110111011001011110110 010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001001110111100111011101010010101101001010011 001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000001011011011001010100100000001111110100011 000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110011000110101010101010111111111000011011100 001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110111101101110000000100101100110110010001111 001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100100000101001011011101001011010101111101111 100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000101101100001111100000110001100011101000 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0] mindist=74 weight enumerator=1 [0] 546 [74] 1386 [76] 294 [80] 1386 [82] 1962 [84] 168 [88] 966 [90] 1134 [92] 49 [96] 174 [98] 126 [100]
q=2 k=13 n=171 d=76 (using automorphisms) ( link ) code with group 126446 generator matrix: 000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111000000000001111111111000000011111111111111011 000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111000000011110000001111000111100000000111111000 001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111000011100110001110011011011100011111001111101 010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011000000001010010010101111000011100111000001011 010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101000100010000010000100111001100100001010110000 011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011001100000110110101101010100101011010010011 011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101100110111100100100010110111011001011110110110 010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001001110111100111011101010010101101001010011101 001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000001011011011001010100100000001111110100011011 000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110011000110101010101010111111111000011011100101 001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110111101101110000000100101100110110010001111101 001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100100000101001011011101001011010101111101111101 100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000101101100001111100000110001100011101000101 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0] mindist=76 weight enumerator=1 [0] 987 [76] 945 [78] 294 [80] 2103 [84] 1245 [86] 168 [88] 1281 [92] 819 [94] 49 [96] 237 [100] 63 [102]
q=2 k=13 n=174 d=78 (using automorphisms) ( link ) code with group 126446 generator matrix: 000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111011000000000001111111111000000011111111111111011 000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111011000000011110000001111000111100000000111111000 001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111101000011100110001110011011011100011111001111101 010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011101000000001010010010101111000011100111000001011 010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101110000100010000010000100111001100100001010110000 011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011011001100000110110101101010100101011010010011 011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101101100110111100100100010110111011001011110110110 010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001110001110111100111011101010010101101001010011101 001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000101001011011011001010100100000001111110100011011 000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110110011000110101010101010111111111000011011100101 001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110000111101101110000000100101100110110010001111101 001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100110100000101001011011101001011010101111101111101 100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000000101101100001111100000110001100011101000101 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0] mindist=78 weight enumerator=1 [0] 1449 [78] 777 [80] 2757 [86] 759 [88] 1659 [94] 490 [96] 279 [102] 21 [104]
q=2 k=13 n=177 d=80 (using automorphisms) ( link ) code with group 126446 generator matrix: 000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111011000000000001111111111000000011111111111111011000 000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111011000000011110000001111000111100000000111111000011 001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111101000011100110001110011011011100011111001111101000 010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011101000000001010010010101111000011100111000001011101 010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101110000100010000010000100111001100100001010110000101 011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011011001100000110110101101010100101011010010011000 011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101101100110111100100100010110111011001011110110110011 010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001110001110111100111011101010010101101001010011101011 001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000101001011011011001010100100000001111110100011011101 000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110110011000110101010101010111111111000011011100101011 001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110000111101101110000000100101100110110010001111101110 001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100110100000101001011011101001011010101111101111101011 100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000000101101100001111100000110001100011101000101110 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,1] mindist=80 weight enumerator=1 [0] 2226 [80] 3516 [88] 2149 [96] 300 [104]
ternary q=3
q=3 k=8 n=67 d=39 (using extension of a code with automorphisms) ( link ) generator matrix: 0000000011111111111111111111111111111111111111111111111110000000011 0000111100011111201112222000011221111222200000122001122220001111112 0001012200100222210111122002212020112111211222112022200120010012200 0112212200011111210221212122221022002012201112021110102110111200212 0112212201212002222000202010202012020220111021012011211010001111112 0222022200200021202022212200122022111120111222201000111101220122212 0010120102222102020000221120012000102202221122002201111022222222121 1100102201211210111100012201210002002012222222011122022121210110000 mindist=39 weight enumerator=1 [0] 1112 [39] 1486 [42] 1776 [45] 1456 [48] 650 [51] 80 [54] This is a self-orthogonal code
q=3 k=8 n=76 d=45 (using automorphisms) ( link ) code with group 1319 generator matrix: 0000011111111111000000111111111111000001111111111100000111000111111111111101 0001100011222222001111000122222202111110001122222201111012001000111111122211 0110101202011222010022022100112222111220011200022210112012010012000111200002 0011200112001001100201201101011212122021211012212201121210120022001112001220 0210022020100011112222102120022221201120212211221110122210012012122121110110 0010212201222002120212002100221202101201022202100100020102021202112021110011 0120101012212200102220101112220020212012201121220102202111112010112020220221 1220020002220111121121221122010202121211002002102001111120202220020122210211 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1 ,0,0] mindist=45 weight enumerator=1 [0] 1344 [45] 1352 [48] 1432 [51] 1664 [54] 640 [57] 128 [60]
q=3 k=8 n=169 d=105 (using extension of a code with automorphisms) ( link ) generator matrix: 0001111111111111000000111111111100001111111111110000000111111111110000111111111111000111111111111100011111111111110000001111111111011100011111111111110000001111111111111 1110001111122222011111001111222200110000000122220000111001122222120111000001111122001000011122222211100011222222220000110011112222101211100011111222220001110001111122000 0111220011200112101112010222001211121112222000220111111010200012021001000000012222000001101100112201200202011111220111021101120022022201112200112001121110120110111200111 2000010201012012110020012122012222220220122211020011022101200122022111001120111212012021211212122222101101000122111002210120201211011101210002020120200120011002012001111 2010011110210022020120200200020211002120112012121102102002100102221222220122002022102211120010120022101022001200120120022102012012221001010011202221202000110220120112222 2001001101020110221120020101211001011122221222101020110102002121010021112000112202110222101011200221120000002102011000201100220101221012110000122000202210210022001222222 1002020002100220211201220001210002000210120022112102020012101010220121222120011202121021120112210120002112200220111021212002010021112011121120222202010112100202200221222 2121102022100000112210220202101220220222112200212102200011201001000210011200200222021220012211211010020012211111211201012221112010112002121201001100012122222122122102000 mindist=105 weight enumerator=1 [0] 1312 [105] 1044 [108] 768 [111] 1616 [114] 738 [117] 384 [120 ] 536 [123] 96 [126] 64 [132] 2 [162] This is a self-orthogonal code
q=3 k=8 n=179 d=111 (using extension of a code with automorphisms) ( link ) generator matrix: 00000001000111111011111101111110011111011111100111110011111001111101111110011111001111100011110011111001111100111110011111000111100001110011111001111100011110001111000011100001111 00000010001011111101111210111120101122101111201011220101222110011210122221100122010111200101120102222110022201012221100122001012200010221100122110011201100120110012001100200110011 00000100011001111220111222011121201202120112212001121202012121200221011122222002110012201100221200111021201111020110111201011020100120011211200011212010102201120100010202011010001 00001000111000111212011221201122212002122022221100122221001021112012112200211210112022011200202110022112010212210021201120112010001210002012022111020110210011002210102001001001101 00010000111100011211201221120122220021222222011210102110102200111221201221001121122220012220001222001221202021221001112001121100012100000220212121201021010100102021021010000100111 00100000110110011211120221112022120210212220111121001210220122001212111012120022222200122022002111100102110112101202011120210102021001002202101102210101122001210001210000210110001 01000000100111011211112021111201022110211201110112022022210121120011220222212200201201120012011022220210222020202211120021100202110002201122010210201112002012012100100220011001001 10000000111111101211111212222210000000211122222222212211212212222122222112211122221122211122111112121222121200000001111121000000022222122121221111211111112111112111111211222222222 mindist=111 weight enumerator=1 [0] 784 [111] 1302 [114] 1316 [117] 966 [120] 812 [123] 602 [126 ] 440 [129] 182 [132] 154 [135] 2 [150] This is a self-orthogonal code
q=3 k=8 n=187 d=117 (using extension of a code with automorphisms) ( link ) generator matrix: 0000000001111111111111111100000011111111111111111111000000000111111111111111110000001111111111111111111100000000011111111111111111000000000001111111111111110000000000011111111111111111111 0000111110011111112222222211111100000011111222222222000011111000001111222222220011110000000000111111222200111111100000000001112222001111111110000001112222220011111111100000011122222211111 0011002220100112220000011200011100122200011011122222111101222000110022000111221100220000011122000222001211011222200001222221120112110000111120000220010111221100001111200002200101112222222 0102000120000010220222212111102212001201101101211122012210122122220101002112121102021112211201012012120211022011202221012220122022010001012210022221111122010100010122100222211111220111111 0001010011101022012001222012220022220121210111101102202201212202222020221012211222200112202110102111012111222100110111110122201120120220220121222010101102021202202201212220101011020211111 0010102101011122220012212101210221001000202211020220010201210100021102120020120112201001211221022222221112101000021021200110211010112022112201201010111112211120221122012010101111122100000 1211112101212210220100222022011120222100201222210122211121020022201222202112022102212011000200212110121020100202111122102110200012201012200010202022111121212010122000102020221111212111111 2222211122121121211112122122112211211221222112121212000000000000000000000000001221122121122211212112221121221211212212211111212121111111111111211212121222222222222222221221212121111112001 mindist=117 weight enumerator=1 [0] 1092 [117] 286 [118] 286 [119] 364 [120] 520 [121] 520 [122 ] 52 [123] 52 [124] 52 [125] 1196 [126] 338 [127] 338 [128] 338 [129] 104 [130] 104 [131] 2 [133] 2 [134] 548 [135] 78 [136] 78 [137] 78 [139] 78 [140] 52 [144] 2 [159]
q=3 k=8 n=196 d=123 (using automorphisms) ( link ) code with group 1201 generator matrix: 0000001111111111111111110000001111111111111111110000000001111111111111110000000001111111111111110000001111111111111111110000001111111111111111110000001111111111111111110000000001111111111111110000 0001110000001111112222220011110000111111122222220000111110000000011222220000111110000011222222220111110000000011111111220011110000111111122222221111110000001111112222220001111110001111112222220111 1110110011220011120111221101220122000122201112220001112220011122202111220111012220022201011122220000120000112200001122121111220112000122200111220000000000020000110001220010011220000001110011220222 2222221101021201221000221220002111122211110020120110000220101211102012121111111121112210102201221122220011001201121222020100010020011011222112110111220012211112111221111120111020112220220122011012 0111020112222020012112112002010222011200211102011120221010012001221001022012012210210012100100221200100102120110112101102000112222000001011111221001020020121122120011020102202012011120122001202210 1121211102020021222022021110100101002012220220122002112000220221120020222212121221100200200001022100202110202212010120102211211120022110000121220020110121222220001222000110011000020010122100122102 1222211110000202222120110111011012000120121201010212010102002112102100211022011000011120100122221101002002102210220111100122110112022202201202111012221010000210011111022202220201201212022210110111 0211021201220112220021111201101012222012002111121210121202120210020010102110001022212001112010201110221101110220101000010002202102002011200120010122002111212101122001211202012222220011222021101201 corresponding to the solution: [0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] mindist=123 weight enumerator=1 [0] 1032 [123] 1360 [126] 960 [129] 1752 [132] 648 [135] 192 [138 ] 144 [141] 16 [144] 360 [147] 96 [150]
q=3 k=9 n=102 d=60 (constructed using a program of Johannes Zwanzger) ( link ) generator matrix: 000000000111111100000000111111110000011111111111000000001111111100001111111111110000001111111111011110 000111111011222201111111000011120011100011111222001111110001122211110000001112220111110001111222101121 011001122201011200000122012202220101200211222112010112221120011212221122220120021001120220112011202022 112020212120022200022122111201121221102212002012111010220211202122220001121110112111221020220101000000 211120220012000200202201221011212120120100022000022020220211202220020110222022001120012221011221022220 200222220120211001022021121010002212110010110211121211121222012111202011120221122021101012220011120201 012102001220011201011012002221212212122202201212002212102012120221212100111101100212010102022202022220 210121100100212110001102022111102101102101100102002022002112221020100101202022202110220020110111022000 110012212210102001002200122110201010200222002220002002022120012122022211220210112020012020010220101201 mindist=60 weight enumerator=1 [0] 1668 [60] 4080 [63] 3572 [66] 3368 [69] 4064 [72] 2672 [75 ] 256 [78] 2 [102] This is a self-orthogonal code
q=3 k=9 n=168 d=102 (using automorphisms) ( link ) code with group 58944 generator matrix: 000000000111111111111111000000111111111111111111000000111111111111111111000000111111111111111111000000000111111111111111000000000111111111111111000000000111111111111111 011111111001111122222222001111000011111112222222000111000111111111222222000111000111111222222222001111111000011112222222000001111000000011112222000111111000000111111222 100111112120122200011222001122012200112220122222001012022000011122011122011112011000012000112222110000012000100220011122000110011111112200110022011001112000011001222111 112001122120001200011022110211220112110012001112012220202001201202001212012000202001201122021122020001202002011110000111011021102001220002010001112220222001202021222022 011120200112122200112111021202120120000102110112102212010010200201021212111010010121211200211222021221002000002120201001022100110121010111120100022110121111220021112100 210120200120210012221001100121010021010101012122112111222211211100101112021222210001101101102100121001212121201120102110101211012221012201221200100012102011001111120012 000121102210021121001220022002101110000210222122110221100211220220010010221212110220222220002201101000112020000010202212210001220221021101010220220102000202100020120011 000221002102000020220111122100102211110222021210020000121021210022211210012022222002002110022011221012110021100010120022221001020022212010200000021220012012101012021010 000002100110111200010112022021120220002000020022202221021201121001121201000112200100020220020112120012101212211011021220120202222120102012202122121212001102021110211021 corresponding to the solution: [0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=102 weight enumerator=1 [0] 1672 [102] 2448 [105] 3320 [108] 2816 [111] 3616 [114] 2992 [117] 1388 [120] 1168 [123] 192 [126] 64 [129] 4 [132] 2 [144]
q=3 k=9 n=205 d=126 (using automorphisms) ( link ) code with group 58944 generator matrix: 0000001111111111111111110000000001111111111111110000001111111111111111110000000001111111111111110000000001111111111111110001111100000000011111111111111100000000011111111111111100000011111111111111111111101 0011110000111111122222220000111110011111111222221111110000001111112222220000011110000111111122220000011110000111122222220002222200011111100000011111122200001111100000000111112200011100000011111122222202211 0011220122001122201222220111002220200011222001220122220011220000120011220001101220112000022200020001100220012122200112221110022201100001100011200112200200010012200011222012221211100201112200112200001121010 1102112201121100120011120012002222211201122122021001220001120112000200020110222000121011211211220010202002210002200021120120201210201220200222202010012111101211202200012000022111122020022201111200221202111 0212021201200001021101121222021221212100222112221212021100021120020012021000000020011202001222110011201011222220212101210212021020100111001022020011112201202100011202010020200100101200221210122112221220121 1001210100210101010121220112021122010111112201020001210221111221201110211122211120002210021122020002220200021001012001222102002111212122000101200001201122211011012212100010112111022211002100000210000110112 0220021011100002102221220021220112112120210212011211022011110012102210212102212112001010210122211111111001221002021001000212021012212111200120220212001202000121212210001222010100200221002121020001120022102 1221001022111102220212100101222112111102201001212211112200212221022210000120110222102002211111222201220202202202010101020000000012021001220102222100200111120202110010212221222002210121012002021021202011001 0220211202200020000200220000100120001010122011122121001121111022202020211100020220210002220002101220211001121110202212201202112020110122120222112002211022002100021220220002000202010201022122112111120100000 corresponding to the solution: [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] mindist=126 weight enumerator=1 [0] 1656 [126] 2256 [129] 3024 [132] 3328 [135] 2800 [138] 2544 [141] 2048 [144] 1000 [147] 768 [150] 194 [153] 64 [156]
q=4
q=4 k=8 n=180 d=124 (using automorphisms) ( link ) code with group 108315 generator matrix: [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]: [0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]: [0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]: [0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]: [1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1] ] [[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]: [0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]: [1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]: [0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]: [0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]: [0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]: [0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]: [1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[1,0]: [1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]: [0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1] ] [[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[1,0]:[1,0]:[1,1]:[0,1]: [0,1]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]: [1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:[1,1]: [0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,1]: [0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]: [0,0]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]: [0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[0,0]: [0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]: [1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,0]:[0,0]: [0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]: [1,1]:[0,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:[1,0]:[0,0]:[1,1]:[0,1]: [1,0]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]: [0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]: [0,0]:[0,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[0,1] ] [[0,0]:[1,1]:[0,0]:[1,1]:[1,1]:[0,0]:[0,0]:[1,0]:[0,0]:[1,1]:[0,0]:[1,0]: [1,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,1]:[1,1]:[1,0]:[1,1]:[0,1]:[0,1]:[1,1]: [0,1]:[0,0]:[1,0]:[0,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]:[1,0]:[1,1]:[0,1]: [1,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,1]:[0,1]:[0,1]:[0,0]:[0,0]: [0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[0,0]: [0,0]:[0,1]:[1,0]:[1,0]:[0,1]:[1,1]:[1,0]:[1,1]:[1,1]:[1,1]:[1,0]:[0,0]: [1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[0,0]:[0,1]:[1,0]:[0,0]: [0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]:[0,1]:[0,1]:[1,1]:[0,1]: [1,0]:[0,0]:[0,1]:[0,1]:[1,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]: [1,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,0]:[1,1]:[1,0]:[1,0]:[1,1]:[1,1]:[0,1]: [1,0]:[1,0]:[1,1]:[1,0]:[0,1]:[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[1,1]: [0,1]:[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,1]:[0,1]:[0,0]:[1,0]:[1,1]: [0,1]:[0,0]:[0,0]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,0]:[1,1]:[0,0]:[1,0]: [0,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[1,1]:[0,0]:[1,1]:[0,0]:[0,0]:[0,0]: [0,1]:[1,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,1]:[1,0]:[1,0]:[1,1]:[0,0] ] [[0,0]:[1,0]:[0,0]:[0,0]:[1,1]:[0,1]:[1,1]:[0,0]:[0,0]:[1,0]:[0,1]:[0,0]: [1,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,1]:[1,1]:[1,0]:[1,0]:[1,1]:[0,0]:[1,0]: [0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]:[0,1]:[1,1]:[1,0]:[0,1]:[0,1]:[1,1]: [1,1]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[0,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,0]: [0,1]:[1,0]:[1,0]:[1,1]:[1,0]:[1,1]:[1,1]:[1,0]:[0,1]:[1,0]:[1,0]:[1,1]: [1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,0]:[1,1]:[1,1]:[0,1]:[1,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[1,0]:[1,1]:[0,0]: [1,0]:[1,0]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,1]:[0,1]:[1,0]:[0,1]:[0,1]: [0,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,0]:[0,1]:[1,0]: [1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[1,1]:[0,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,1]: [1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[0,0]:[0,0]:[0,1]:[0,0]:[1,0]: [0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[0,0]:[1,1]:[0,1]:[1,1]:[1,1]:[1,0]:[0,1]: [0,0]:[0,0]:[0,1]:[0,0]:[0,0]:[1,1]:[1,0]:[1,1]:[0,1]:[1,1]:[0,0]:[0,0]: [0,1]:[0,0]:[0,1]:[1,0]:[0,0]:[1,0]:[1,1]:[1,0]:[1,0]:[0,0]:[0,1]:[1,1]: [0,1]:[0,0]:[0,1]:[1,0]:[0,0]:[1,1]:[0,1]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1] ] [[0,0]:[0,0]:[0,0]:[0,1]:[0,0]:[0,0]:[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[0,1]: [0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]:[0,0]:[1,0]:[0,1]:[1,0]: [0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[1,0]:[0,0]:[0,0]:[0,0]:[1,0]:[0,1]:[1,1]: [0,0]:[0,0]:[0,1]:[0,1]:[1,1]:[1,0]:[1,0]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]: [0,1]:[0,1]:[1,0]:[0,0]:[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:[1,0]:[1,1]:[0,1]: [0,0]:[1,1]:[0,0]:[1,0]:[1,1]:[1,0]:[0,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,0]: [1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,1]:[1,1]: [1,1]:[0,1]:[0,1]:[0,0]:[0,0]:[1,1]:[1,0]:[0,1]:[1,1]:[1,0]:[0,1]:[0,1]: [0,0]:[0,0]:[1,0]:[0,0]:[1,0]:[0,0]:[1,0]:[1,0]:[0,1]:[1,1]:[0,1]:[1,0]: [1,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[0,1]:[1,0]:[0,1]:[1,1]:[0,0]: [1,0]:[1,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,0]:[0,0]:[1,1]:[0,0]:[0,0]:[1,1]: [0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,1]:[0,0]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]: [1,1]:[0,1]:[0,1]:[0,0]:[0,1]:[0,0]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[0,1]: [1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[1,0]:[0,0]:[0,0]:[1,1]:[1,1]:[0,1]:[0,1]: [1,1]:[0,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,1]:[0,0]:[1,0]:[0,0]:[1,1]:[0,0] ] [[0,0]:[0,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,1]:[0,1]:[1,1]:[1,0]:[0,1]:[1,0]: [0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,1]:[0,1]:[1,1]:[1,0]:[1,1]: [1,0]:[1,0]:[1,1]:[1,0]:[0,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,0]:[1,1]:[0,0]: [0,0]:[1,1]:[1,0]:[1,1]:[1,0]:[0,1]:[0,1]:[1,1]:[1,0]:[0,1]:[0,0]:[1,0]: [0,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[0,1]:[1,1]:[1,0]:[0,0]:[0,0]:[0,0]: [1,1]:[0,1]:[1,0]:[1,0]:[0,1]:[1,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]: [1,0]:[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,0]:[0,1]:[1,0]:[1,0]: [0,1]:[1,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,0]:[1,1]:[0,0]: [1,1]:[1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:[1,1]: [1,0]:[0,1]:[1,0]:[1,0]:[1,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,0]:[0,0]:[1,0]: [1,0]:[0,0]:[0,1]:[1,1]:[0,1]:[1,0]:[0,0]:[1,1]:[0,0]:[1,0]:[0,1]:[0,0]: [1,0]:[0,1]:[0,0]:[1,0]:[0,1]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[0,1]:[0,1]: [0,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[1,1]:[0,0]:[0,0]: [1,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,0]:[1,1]:[1,0]:[0,0]:[0,0]:[0,1]:[1,1]: [1,1]:[1,0]:[0,1]:[1,1]:[0,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1] ] [[1,1]:[0,0]:[1,0]:[0,0]:[1,1]:[1,1]:[0,0]:[1,1]:[0,1]:[0,0]:[0,1]:[0,1]: [1,1]:[0,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,0]:[0,0]:[0,1]: [1,1]:[0,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[0,1]:[0,1]: [0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[0,1]:[1,1]: [0,1]:[0,1]:[0,1]:[0,0]:[1,0]:[0,0]:[1,1]:[0,0]:[1,0]:[0,0]:[0,0]:[0,1]: [0,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[1,0]:[0,1]:[1,1]:[1,1]: [0,0]:[0,1]:[1,1]:[1,0]:[1,0]:[1,0]:[0,0]:[1,0]:[1,1]:[0,0]:[1,0]:[1,0]: [0,1]:[1,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,0]:[1,0]:[0,0]:[1,0]:[0,0]: [1,1]:[1,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,0]:[1,1]:[0,1]: [0,0]:[0,1]:[1,1]:[0,1]:[0,0]:[0,1]:[1,1]:[0,1]:[1,0]:[1,1]:[0,1]:[1,1]: [1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,1]:[0,0]:[1,0]:[0,0]:[1,1]:[1,1]: [1,1]:[1,1]:[1,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,1]:[0,0]:[1,0]:[1,0]:[1,0]: [1,0]:[1,0]:[0,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[0,0]:[1,1]: [1,0]:[0,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[1,1]:[0,0]:[1,0]:[0,1]:[0,1]: [1,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,0]:[1,1]:[0,0]:[1,0] ] corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] mindist=124 weight enumerator=1 [0] 4095 [124] 9345 [128] 14595 [132] 17535 [136] 12705 [140] 5580 [144] 1365 [148] 315 [152]
q=5
q=5 k=7 n=58 d=39 (using automorphisms) ( link ) code with group 127081 generator matrix: 1111111111111111111111111111111111111111111111111111000000 1111114444440000112233441144000022223333222222333333001111 1223341223341144231414230000223311441144002233002233000023 4141411141441414230000321414232302030302232323232323111400 3422432311323223114411440000144121213434223003330220003300 4141414414113322001414004114223320302030232323323232140041 3314222423131414412332140000141412434312320320322003330000 corresponding to the solution: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=39 weight enumerator=1 [0] 1384 [39] 1192 [40] 2400 [41] 3264 [42] 4992 [43] 7836 [44 ] 8480 [45] 9528 [46] 9192 [47] 9436 [48] 8456 [49] 5472 [50] 3376 [51] 2308 [52] 432 [53] 264 [54] 96 [56] 16 [57]
q=7
q=7 k=5 n=24 d=17 (using automorphisms) ( link ) code with group 59898 generator matrix: 000001111111111111111111 000110230230234444156156 111002414125360124142214 124050004214210356536241 421000005556661444333111 corresponding to the solution: [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ] mindist=17 weight enumerator=1 [0] 966 [17] 1338 [18] 2076 [19] 2982 [20] 3894 [21] 3702 [22] 1416 [23] 432 [24]
q=7 k=5 n=30 d=22 (using automorphisms) ( link ) code with group 59821 generator matrix: 000111111111111111011111111111 001011246614561236104623451334 010011533553662646453011534235 100011664263126145360232455251 000014643132342215313666320000 corresponding to the solution: [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] mindist=22 weight enumerator=1 [0] 1122 [22] 1464 [23] 2022 [24] 2256 [25] 3666 [26] 3144 [27 ] 2292 [28] 684 [29] 156 [30]
q=7 k=5 n=36 d=27 (using automorphisms) ( link ) code with group 59705 generator matrix: 001111111111110111111111111101111111 011456613345661004556123345610115661 024211424514566231124141201442236332 051344102322554145626323235424610163 123326440061502216252045613316551150 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] mindist=27 weight enumerator=1 [0] 1260 [27] 1560 [28] 1554 [29] 2646 [30] 2814 [31] 2898 [32 ] 2478 [33] 1134 [34] 462 [35]
q=7 k=5 n=42 d=32 (using automorphisms) ( link ) code with group 59612 generator matrix: 000111110111111101111111011111111100001111 011124451001146610344566102555563601110056 003500514230262646546035130004555212463440 052156010006016530423066422132143122543145 156560000334616621266420016023344412431500 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0] mindist=32 weight enumerator=1 [0] 1176 [32] 1848 [33] 1764 [34] 1848 [35] 2616 [36] 2676 [37 ] 2736 [38] 1200 [39] 798 [40] 144 [41]
q=7 k=5 n=48 d=37 (using automorphisms) ( link ) code with group 59506 generator matrix: 001111111111111100011111111111110001111111111111 010022233455556601112334455556661110000112333446 011425516522450410125151502662354560023346022044 050433630014414530044032503260261202612456356532 163243556363553220644654062264621002435012306443 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0] mindist=37 weight enumerator=1 [0] 1440 [37] 1248 [38] 1632 [39] 2856 [40] 2208 [41] 2112 [42 ] 1536 [43] 2424 [44] 1248 [45] 96 [47] 6 [48]
q=7 k=5 n=54 d=42 (using automorphisms) ( link ) code with group 61228 generator matrix: 000000111111000111111111111111111111000111111111111111 000111000124111000112244112233445566111000123456124124 111124000000124222040404161616161616356666006066111111 124000124000444124204010615243342516666124650300124124 635635635635421214241241221143441625124356351624356000 corresponding to the solution: [0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0] mindist=42 weight enumerator=1 [0] 1416 [42] 1404 [43] 1980 [44] 1836 [45] 1746 [46] 2232 [47 ] 2988 [48] 1638 [49] 864 [50] 390 [51] 216 [52] 72 [53] 24 [54 ]
q=7 k=5 n=66 d=52 (using automorphisms) ( link ) code with group 61256 generator matrix: 001111111111111011111111111110111111011111100011110001111011111111 000113551223566102344601256661123566001224511123441110023100233300 006456251112046544403565530150443513133366011414012450453435301300 011555363452635365263223542416424436331453356425344552345366225300 100000003452635412514515621245141165554265542634161334613000000065 corresponding to the solution: [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0] mindist=52 weight enumerator=1 [0] 1572 [52] 1260 [53] 1806 [54] 1344 [55] 1974 [56] 2520 [57 ] 1974 [58] 1614 [59] 1344 [60] 672 [61] 462 [62] 258 [63] 6 [66 ]
q=7 k=5 n=79 d=63 (using automorphisms) ( link ) code with group 61228 generator matrix: 0001111111111111111111111111111111110001111111111111111111110000001111111110011 1110001122441122334455661122334455661110001234561122334455660001110003561241100 1242220404044646264626263535663566663563330050554545234523231113560000001110024 4441242040106254453126136655123314245551243605005234256116433560003560001242400 4212142412411442152123461345152632464123563546124221151423463653654123651420000 corresponding to the solution: [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 ,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0] mindist=63 weight enumerator=1 [0] 1422 [63] 1548 [64] 1818 [65] 1602 [66] 1842 [67] 1752 [68 ] 2196 [69] 1242 [70] 1332 [71] 864 [72] 504 [73] 444 [74] 168 [75 ] 72 [76]
q=7 k=5 n=85 d=68 (using automorphisms) ( link ) code with group 78814 generator matrix: 0011111111111111111110011111011111100111111111111001111100111110011111001111100111111 0000000011346601225561103366102256611033660334556011234611033551122335110334411022441 0113456624332450362653530636410331625624062053344125530304326451514041262230645646345 0000000153445363422432355116666353545262615351212254524515352230000000344133145646340 1615615000000063422435422661444212126131345351212615165162425544411556522455400000000 corresponding to the solution: [1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] mindist=68 weight enumerator=1 [0] 1512 [68] 1638 [69] 1254 [70] 1638 [71] 1890 [72] 2016 [73 ] 1218 [74] 2394 [75] 1176 [76] 714 [77] 588 [78] 336 [79] 210 [80 ] 126 [81] 84 [82] 12 [84]
q=7 k=5 n=91 d=73 (using automorphisms) ( link ) code with group 59892 generator matrix: 0111111111110001111111110001111111110011111111111111111111110000111111110110111111111111101 0011123334561111223345661110011135560101112345660122334444550111122233551151001134455550312 0305614663040365232461260041511651161221353313451316002225251045205556236036343640201125263 0625315363045024115411110330223614526056063526152322133453002152001305254500334001053666135 1426205502603124660202332635655424324066353204134244554334442462442160355213535314103451025 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0 ,0,0] mindist=73 weight enumerator=1 [0] 1332 [73] 1350 [74] 1992 [75] 1452 [76] 1656 [77] 1728 [78 ] 1296 [79] 2592 [80] 1080 [81] 1092 [82] 72 [83] 582 [84] 288 [85 ] 222 [87] 72 [88]
q=7 k=5 n=100 d=81 (extension of a code using automorphisms) ( link ) generator matrix: 0011111111111111111110011111111111100111111111111001111100111110011111001111100111110111111001111111 0000000011346601225561103366011346611033660122556011234601123461101455110145511033441112244110334411 0113456624332450362653530636605511625624065115044146436412553031101455345660526223061450435142120155 0000000153445363422432355116642334245262611453534423253225452452431314534646334413310000000343646400 1615615000000063422435422661456225626131342136361000000061516512431314361515652245541112244434131300 mindist=81 weight enumerator=1 [0] 2352 [81] 1764 [82] 4746 [84] 5880 [88] 1764 [91] 294 [96] 6 [98]
q=7 k=6 n=59 d=44 (using automorphisms) ( link ) code with group 127160 generator matrix: 01111111111101111111111101111111111111111111111111110111110 01235601133610455601466610044622455602233655551122341001330 04514620504460505315101365633326624142206136452306266052151 03460420226306533534636414504424631422612004400616664400252 01620654040541032065433462312136215620405133336321534351620 13444515613312226566343265511646246162563200006551644466610 corresponding to the solution: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] mindist=44 weight enumerator=1 [0] 1890 [44] 2796 [45] 4560 [46] 6888 [47] 9660 [48] 12726 [49 ] 16644 [50] 17106 [51] 17100 [52] 11316 [53] 9870 [54] 4662 [55 ] 1644 [56] 660 [57] 114 [58] 12 [59]