´

new codes from 311008

  • binary: 4 improvements + 6 derived
  • ternary: 9 improvements + 12 derived
  • q=4: 1 improvements + 1 derived
  • q=5: 1 improvement
  • q=7: 12 improvements + 3 derived
  • q=8:
  • q=9:

binary q=2

q=2 k=13 n=168 d=74 
(using automorphisms)
( link )

code with group 126446 

generator matrix:
000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111000000000001111111111000000011111111111111
000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111000000011110000001111000111100000000111111
001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111000011100110001110011011011100011111001111
010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011000000001010010010101111000011100111000001
010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101000100010000010000100111001100100001010110
011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011001100000110110101101010100101011010010
011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101100110111100100100010110111011001011110110
010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001001110111100111011101010010101101001010011
001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000001011011011001010100100000001111110100011
000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110011000110101010101010111111111000011011100
001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110111101101110000000100101100110110010001111
001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100100000101001011011101001011010101111101111
100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000101101100001111100000110001100011101000
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0]
mindist=74
weight enumerator=1 [0]  546 [74]  1386 [76]  294 [80]  1386 [82]  1962 [84]  168 [88]  966
 [90]  1134 [92]  49 [96]  174 [98]  126 [100]  
q=2 k=13 n=171 d=76 
(using automorphisms)
( link )

code with group 126446 

generator matrix:
000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111000000000001111111111000000011111111111111011
000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111000000011110000001111000111100000000111111000
001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111000011100110001110011011011100011111001111101
010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011000000001010010010101111000011100111000001011
010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101000100010000010000100111001100100001010110000
011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011001100000110110101101010100101011010010011
011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101100110111100100100010110111011001011110110110
010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001001110111100111011101010010101101001010011101
001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000001011011011001010100100000001111110100011011
000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110011000110101010101010111111111000011011100101
001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110111101101110000000100101100110110010001111101
001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100100000101001011011101001011010101111101111101
100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000101101100001111100000110001100011101000101
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0]
mindist=76
weight enumerator=1 [0]  987 [76]  945 [78]  294 [80]  2103 [84]  1245 [86]  168 [88]  1281
 [92]  819 [94]  49 [96]  237 [100]  63 [102]  
q=2 k=13 n=174 d=78 
(using automorphisms)
( link )

code with group 126446 

generator matrix:
000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111011000000000001111111111000000011111111111111011
000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111011000000011110000001111000111100000000111111000
001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111101000011100110001110011011011100011111001111101
010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011101000000001010010010101111000011100111000001011
010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101110000100010000010000100111001100100001010110000
011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011011001100000110110101101010100101011010010011
011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101101100110111100100100010110111011001011110110110
010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001110001110111100111011101010010101101001010011101
001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000101001011011011001010100100000001111110100011011
000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110110011000110101010101010111111111000011011100101
001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110000111101101110000000100101100110110010001111101
001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100110100000101001011011101001011010101111101111101
100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000000101101100001111100000110001100011101000101
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0]
mindist=78
weight enumerator=1 [0]  1449 [78]  777 [80]  2757 [86]  759 [88]  1659 [94]  490 [96]  279
 [102]  21 [104]  
q=2 k=13 n=177 d=80
(using automorphisms)
( link )

code with group 126446 

generator matrix:
000000000001111111111000000000111111111111000000000001111111111000000011111111111111000000000111111111111000000000001111111111011000000000001111111111000000011111111111111011000
000011111110001111111000001111000000111111000000011110000001111000001100000011111111000000011000011111111000011111110001111111011000000011110000001111000111100000000111111000011
001100001110010001111000010001000111000111000001101110000110111000110100011100001111000011101011100011111000100011110010001111101000011100110001110011011011100011111001111101000
010100110011100110001000110011001011001011001110010000111110001001011001100100110011001100110100101100011001000100110100010011101000000001010010010101111000011100111000001011101
010101010010101010011011110101000100110001110010010110111001011010001111111101010111110101000011111101111110000101111000100101110000100010000010000100111001100100001010110000101
011110000111101000100101111010010100011011000000011110111011001101110000101011000011011110011011001100101111000011011100000110011011001100000110110101101010100101011010010011000
011111011100101001100111011100111001110011110000001110111100001100111101110110011011000001010011100100000111000111000000011101101100110111100100100010110111011001011110110110011
010000110100000001010101100010010110100011010000110001001000001110011100100100101100010111110100000011010001000010110100110001110001110111100111011101010010101101001010011101011
001101010011010001110111010000000010111101010100110001011001110111101010010100010100100001110100101010101000001110010000000000101001011011011001010100100000001111110100011011101
000000000111111110110001010000011000100010010000111011001000111010001111010100101001000000011101011001111111011000011110100110110011000110101010101010111111111000011011100101011
001010101011110100001001010011101100011100100001011010001101110001111000010010101000110100010000011000000111001101001100000110000111101101110000000100101100110110010001111101110
001000110010000100001011101110110010110111101000110010110101100110001011001010101100001000100001110011111010101110010001000100110100000101001011011101001011010101111101111101011
100110000110111010100000011011111100001100011001001101110001010001101111110001000111110111001011010011111111101010001110100000000000101101100001111100000110001100011101000101110
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,1]
mindist=80
weight enumerator=1 [0]  2226 [80]  3516 [88]  2149 [96]  300 [104]  

ternary q=3

q=3 k=8 n=67 d=39 
(using extension of a code with automorphisms)
( link )

generator matrix:
0000000011111111111111111111111111111111111111111111111110000000011
0000111100011111201112222000011221111222200000122001122220001111112
0001012200100222210111122002212020112111211222112022200120010012200
0112212200011111210221212122221022002012201112021110102110111200212
0112212201212002222000202010202012020220111021012011211010001111112
0222022200200021202022212200122022111120111222201000111101220122212
0010120102222102020000221120012000102202221122002201111022222222121
1100102201211210111100012201210002002012222222011122022121210110000
mindist=39
weight enumerator=1 [0]  1112 [39]  1486 [42]  1776 [45]  1456 [48]  650 [51]  80 [54]  
This is a self-orthogonal code
q=3 k=8 n=76 d=45 
(using automorphisms)
( link )

code with group 1319 

generator matrix:
0000011111111111000000111111111111000001111111111100000111000111111111111101
0001100011222222001111000122222202111110001122222201111012001000111111122211
0110101202011222010022022100112222111220011200022210112012010012000111200002
0011200112001001100201201101011212122021211012212201121210120022001112001220
0210022020100011112222102120022221201120212211221110122210012012122121110110
0010212201222002120212002100221202101201022202100100020102021202112021110011
0120101012212200102220101112220020212012201121220102202111112010112020220221
1220020002220111121121221122010202121211002002102001111120202220020122210211
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1
,0,0]
mindist=45
weight enumerator=1 [0]  1344 [45]  1352 [48]  1432 [51]  1664 [54]  640 [57]  128 [60]  

q=3 k=8 n=169 d=105
(using extension of a code with automorphisms)
( link )

generator matrix:
0001111111111111000000111111111100001111111111110000000111111111110000111111111111000111111111111100011111111111110000001111111111011100011111111111110000001111111111111
1110001111122222011111001111222200110000000122220000111001122222120111000001111122001000011122222211100011222222220000110011112222101211100011111222220001110001111122000
0111220011200112101112010222001211121112222000220111111010200012021001000000012222000001101100112201200202011111220111021101120022022201112200112001121110120110111200111
2000010201012012110020012122012222220220122211020011022101200122022111001120111212012021211212122222101101000122111002210120201211011101210002020120200120011002012001111
2010011110210022020120200200020211002120112012121102102002100102221222220122002022102211120010120022101022001200120120022102012012221001010011202221202000110220120112222
2001001101020110221120020101211001011122221222101020110102002121010021112000112202110222101011200221120000002102011000201100220101221012110000122000202210210022001222222
1002020002100220211201220001210002000210120022112102020012101010220121222120011202121021120112210120002112200220111021212002010021112011121120222202010112100202200221222
2121102022100000112210220202101220220222112200212102200011201001000210011200200222021220012211211010020012211111211201012221112010112002121201001100012122222122122102000
mindist=105
weight enumerator=1 [0]  1312 [105]  1044 [108]  768 [111]  1616 [114]  738 [117]  384 [120
]  536 [123]  96 [126]  64 [132]  2 [162]  
This is a self-orthogonal code
q=3 k=8 n=179 d=111 
(using extension of a code with automorphisms)
( link )
generator matrix:
00000001000111111011111101111110011111011111100111110011111001111101111110011111001111100011110011111001111100111110011111000111100001110011111001111100011110001111000011100001111
00000010001011111101111210111120101122101111201011220101222110011210122221100122010111200101120102222110022201012221100122001012200010221100122110011201100120110012001100200110011
00000100011001111220111222011121201202120112212001121202012121200221011122222002110012201100221200111021201111020110111201011020100120011211200011212010102201120100010202011010001
00001000111000111212011221201122212002122022221100122221001021112012112200211210112022011200202110022112010212210021201120112010001210002012022111020110210011002210102001001001101
00010000111100011211201221120122220021222222011210102110102200111221201221001121122220012220001222001221202021221001112001121100012100000220212121201021010100102021021010000100111
00100000110110011211120221112022120210212220111121001210220122001212111012120022222200122022002111100102110112101202011120210102021001002202101102210101122001210001210000210110001
01000000100111011211112021111201022110211201110112022022210121120011220222212200201201120012011022220210222020202211120021100202110002201122010210201112002012012100100220011001001
10000000111111101211111212222210000000211122222222212211212212222122222112211122221122211122111112121222121200000001111121000000022222122121221111211111112111112111111211222222222
mindist=111
weight enumerator=1 [0]  784 [111]  1302 [114]  1316 [117]  966 [120]  812 [123]  602 [126
]  440 [129]  182 [132]  154 [135]  2 [150]  
This is a self-orthogonal code
q=3 k=8 n=187 d=117 
(using extension of a code with automorphisms)
( link )
generator matrix:
0000000001111111111111111100000011111111111111111111000000000111111111111111110000001111111111111111111100000000011111111111111111000000000001111111111111110000000000011111111111111111111
0000111110011111112222222211111100000011111222222222000011111000001111222222220011110000000000111111222200111111100000000001112222001111111110000001112222220011111111100000011122222211111
0011002220100112220000011200011100122200011011122222111101222000110022000111221100220000011122000222001211011222200001222221120112110000111120000220010111221100001111200002200101112222222
0102000120000010220222212111102212001201101101211122012210122122220101002112121102021112211201012012120211022011202221012220122022010001012210022221111122010100010122100222211111220111111
0001010011101022012001222012220022220121210111101102202201212202222020221012211222200112202110102111012111222100110111110122201120120220220121222010101102021202202201212220101011020211111
0010102101011122220012212101210221001000202211020220010201210100021102120020120112201001211221022222221112101000021021200110211010112022112201201010111112211120221122012010101111122100000
1211112101212210220100222022011120222100201222210122211121020022201222202112022102212011000200212110121020100202111122102110200012201012200010202022111121212010122000102020221111212111111
2222211122121121211112122122112211211221222112121212000000000000000000000000001221122121122211212112221121221211212212211111212121111111111111211212121222222222222222221221212121111112001
mindist=117
weight enumerator=1 [0]  1092 [117]  286 [118]  286 [119]  364 [120]  520 [121]  520 [122
]  52 [123]  52 [124]  52 [125]  1196 [126]  338 [127]  338 [128]  338
 [129]  104 [130]  104 [131]  2 [133]  2 [134]  548 [135]  78 [136]  78
 [137]  78 [139]  78 [140]  52 [144]  2 [159]  
q=3 k=8 n=196  d=123
(using automorphisms)
( link )

code with group 1201 

generator matrix:
0000001111111111111111110000001111111111111111110000000001111111111111110000000001111111111111110000001111111111111111110000001111111111111111110000001111111111111111110000000001111111111111110000
0001110000001111112222220011110000111111122222220000111110000000011222220000111110000011222222220111110000000011111111220011110000111111122222221111110000001111112222220001111110001111112222220111
1110110011220011120111221101220122000122201112220001112220011122202111220111012220022201011122220000120000112200001122121111220112000122200111220000000000020000110001220010011220000001110011220222
2222221101021201221000221220002111122211110020120110000220101211102012121111111121112210102201221122220011001201121222020100010020011011222112110111220012211112111221111120111020112220220122011012
0111020112222020012112112002010222011200211102011120221010012001221001022012012210210012100100221200100102120110112101102000112222000001011111221001020020121122120011020102202012011120122001202210
1121211102020021222022021110100101002012220220122002112000220221120020222212121221100200200001022100202110202212010120102211211120022110000121220020110121222220001222000110011000020010122100122102
1222211110000202222120110111011012000120121201010212010102002112102100211022011000011120100122221101002002102210220111100122110112022202201202111012221010000210011111022202220201201212022210110111
0211021201220112220021111201101012222012002111121210121202120210020010102110001022212001112010201110221101110220101000010002202102002011200120010122002111212101122001211202012222220011222021101201
corresponding to the solution:
[0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
mindist=123
weight enumerator=1 [0]  1032 [123]  1360 [126]  960 [129]  1752 [132]  648 [135]  192 [138
]  144 [141]  16 [144]  360 [147]  96 [150]
q=3 k=9 n=102 d=60 
(constructed using a program of Johannes Zwanzger)
( link )

generator matrix:
000000000111111100000000111111110000011111111111000000001111111100001111111111110000001111111111011110
000111111011222201111111000011120011100011111222001111110001122211110000001112220111110001111222101121
011001122201011200000122012202220101200211222112010112221120011212221122220120021001120220112011202022
112020212120022200022122111201121221102212002012111010220211202122220001121110112111221020220101000000
211120220012000200202201221011212120120100022000022020220211202220020110222022001120012221011221022220
200222220120211001022021121010002212110010110211121211121222012111202011120221122021101012220011120201
012102001220011201011012002221212212122202201212002212102012120221212100111101100212010102022202022220
210121100100212110001102022111102101102101100102002022002112221020100101202022202110220020110111022000
110012212210102001002200122110201010200222002220002002022120012122022211220210112020012020010220101201
mindist=60
weight enumerator=1 [0]  1668 [60]  4080 [63]  3572 [66]  3368 [69]  4064 [72]  2672 [75
]  256 [78]  2 [102]  
This is a self-orthogonal code
q=3 k=9 n=168 d=102 
(using automorphisms)
( link )

code with group 58944 

generator matrix:
000000000111111111111111000000111111111111111111000000111111111111111111000000111111111111111111000000000111111111111111000000000111111111111111000000000111111111111111
011111111001111122222222001111000011111112222222000111000111111111222222000111000111111222222222001111111000011112222222000001111000000011112222000111111000000111111222
100111112120122200011222001122012200112220122222001012022000011122011122011112011000012000112222110000012000100220011122000110011111112200110022011001112000011001222111
112001122120001200011022110211220112110012001112012220202001201202001212012000202001201122021122020001202002011110000111011021102001220002010001112220222001202021222022
011120200112122200112111021202120120000102110112102212010010200201021212111010010121211200211222021221002000002120201001022100110121010111120100022110121111220021112100
210120200120210012221001100121010021010101012122112111222211211100101112021222210001101101102100121001212121201120102110101211012221012201221200100012102011001111120012
000121102210021121001220022002101110000210222122110221100211220220010010221212110220222220002201101000112020000010202212210001220221021101010220220102000202100020120011
000221002102000020220111122100102211110222021210020000121021210022211210012022222002002110022011221012110021100010120022221001020022212010200000021220012012101012021010
000002100110111200010112022021120220002000020022202221021201121001121201000112200100020220020112120012101212211011021220120202222120102012202122121212001102021110211021
corresponding to the solution:
[0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=102
weight enumerator=1 [0]  1672 [102]  2448 [105]  3320 [108]  2816 [111]  3616 [114]  2992
 [117]  1388 [120]  1168 [123]  192 [126]  64 [129]  4 [132]  2 [144]  
q=3 k=9 n=205 d=126 
(using automorphisms)
( link )

code with group 58944 

generator matrix:
0000001111111111111111110000000001111111111111110000001111111111111111110000000001111111111111110000000001111111111111110001111100000000011111111111111100000000011111111111111100000011111111111111111111101
0011110000111111122222220000111110011111111222221111110000001111112222220000011110000111111122220000011110000111122222220002222200011111100000011111122200001111100000000111112200011100000011111122222202211
0011220122001122201222220111002220200011222001220122220011220000120011220001101220112000022200020001100220012122200112221110022201100001100011200112200200010012200011222012221211100201112200112200001121010
1102112201121100120011120012002222211201122122021001220001120112000200020110222000121011211211220010202002210002200021120120201210201220200222202010012111101211202200012000022111122020022201111200221202111
0212021201200001021101121222021221212100222112221212021100021120020012021000000020011202001222110011201011222220212101210212021020100111001022020011112201202100011202010020200100101200221210122112221220121
1001210100210101010121220112021122010111112201020001210221111221201110211122211120002210021122020002220200021001012001222102002111212122000101200001201122211011012212100010112111022211002100000210000110112
0220021011100002102221220021220112112120210212011211022011110012102210212102212112001010210122211111111001221002021001000212021012212111200120220212001202000121212210001222010100200221002121020001120022102
1221001022111102220212100101222112111102201001212211112200212221022210000120110222102002211111222201220202202202010101020000000012021001220102222100200111120202110010212221222002210121012002021021202011001
0220211202200020000200220000100120001010122011122121001121111022202020211100020220210002220002101220211001121110202212201202112020110122120222112002211022002100021220220002000202010201022122112111120100000
corresponding to the solution:
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0]
mindist=126
weight enumerator=1 [0]  1656 [126]  2256 [129]  3024 [132]  3328 [135]  2800 [138]  2544
 [141]  2048 [144]  1000 [147]  768 [150]  194 [153]  64 [156]  

q=4

q=4 k=8 n=180 d=124 
(using automorphisms)
( link )

code with group 108315 

generator matrix:
[[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:
[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]
]
[[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:
[0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:
[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:
[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:
[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:
[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:
[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[0,1]:[1,0]:
[1,1]:[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:
[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]
]
[[0,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[1,0]:[1,0]:[1,1]:[0,1]:
[0,1]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:
[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:[1,1]:
[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,1]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:
[0,0]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,1]:[0,0]:
[0,0]:[0,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[0,0]:
[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,1]:
[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,0]:[0,0]:
[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:
[1,1]:[0,0]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[1,1]:[1,0]:[0,0]:[1,1]:[0,1]:
[1,0]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:
[0,0]:[0,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,1]:[1,1]:[0,0]:[0,0]:[0,0]:
[0,0]:[0,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[1,1]:[1,1]:[0,1]
]
[[0,0]:[1,1]:[0,0]:[1,1]:[1,1]:[0,0]:[0,0]:[1,0]:[0,0]:[1,1]:[0,0]:[1,0]:
[1,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,1]:[1,1]:[1,0]:[1,1]:[0,1]:[0,1]:[1,1]:
[0,1]:[0,0]:[1,0]:[0,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]:[1,0]:[1,1]:[0,1]:
[1,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,0]:[0,0]:[0,1]:[0,1]:[0,1]:[0,0]:[0,0]:
[0,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[0,0]:
[0,0]:[0,1]:[1,0]:[1,0]:[0,1]:[1,1]:[1,0]:[1,1]:[1,1]:[1,1]:[1,0]:[0,0]:
[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,1]:[1,1]:[0,0]:[0,1]:[1,0]:[0,0]:
[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]:[0,1]:[0,1]:[1,1]:[0,1]:
[1,0]:[0,0]:[0,1]:[0,1]:[1,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,0]:[0,0]:[1,0]:
[1,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,0]:[1,1]:[1,0]:[1,0]:[1,1]:[1,1]:[0,1]:
[1,0]:[1,0]:[1,1]:[1,0]:[0,1]:[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,1]:[1,1]:
[0,1]:[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,1]:[0,1]:[0,0]:[1,0]:[1,1]:
[0,1]:[0,0]:[0,0]:[0,0]:[0,0]:[1,0]:[1,1]:[1,1]:[1,0]:[1,1]:[0,0]:[1,0]:
[0,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[1,1]:[0,0]:[1,1]:[0,0]:[0,0]:[0,0]:
[0,1]:[1,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,1]:[1,0]:[1,0]:[1,1]:[0,0]
]
[[0,0]:[1,0]:[0,0]:[0,0]:[1,1]:[0,1]:[1,1]:[0,0]:[0,0]:[1,0]:[0,1]:[0,0]:
[1,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,1]:[1,1]:[1,0]:[1,0]:[1,1]:[0,0]:[1,0]:
[0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]:[0,1]:[1,1]:[1,0]:[0,1]:[0,1]:[1,1]:
[1,1]:[0,0]:[1,0]:[1,0]:[1,0]:[1,1]:[0,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,0]:
[0,1]:[1,0]:[1,0]:[1,1]:[1,0]:[1,1]:[1,1]:[1,0]:[0,1]:[1,0]:[1,0]:[1,1]:
[1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,0]:[0,0]:[1,1]:[1,1]:[0,1]:[1,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[1,0]:[1,1]:[0,0]:
[1,0]:[1,0]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[0,1]:[0,1]:[1,0]:[0,1]:[0,1]:
[0,1]:[0,0]:[0,0]:[0,0]:[0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,0]:[0,1]:[1,0]:
[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[1,1]:[0,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,1]:
[1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[0,0]:[0,0]:[0,1]:[0,0]:[1,0]:
[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[0,0]:[1,1]:[0,1]:[1,1]:[1,1]:[1,0]:[0,1]:
[0,0]:[0,0]:[0,1]:[0,0]:[0,0]:[1,1]:[1,0]:[1,1]:[0,1]:[1,1]:[0,0]:[0,0]:
[0,1]:[0,0]:[0,1]:[1,0]:[0,0]:[1,0]:[1,1]:[1,0]:[1,0]:[0,0]:[0,1]:[1,1]:
[0,1]:[0,0]:[0,1]:[1,0]:[0,0]:[1,1]:[0,1]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]
]
[[0,0]:[0,0]:[0,0]:[0,1]:[0,0]:[0,0]:[1,0]:[1,1]:[0,1]:[0,1]:[1,0]:[0,1]:
[0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]:[0,0]:[1,0]:[0,1]:[1,0]:
[0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[1,0]:[0,0]:[0,0]:[0,0]:[1,0]:[0,1]:[1,1]:
[0,0]:[0,0]:[0,1]:[0,1]:[1,1]:[1,0]:[1,0]:[1,0]:[1,1]:[0,1]:[0,0]:[1,0]:
[0,1]:[0,1]:[1,0]:[0,0]:[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:[1,0]:[1,1]:[0,1]:
[0,0]:[1,1]:[0,0]:[1,0]:[1,1]:[1,0]:[0,0]:[0,0]:[0,1]:[1,0]:[0,0]:[0,0]:
[1,1]:[0,0]:[0,0]:[0,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]:[0,1]:[1,1]:
[1,1]:[0,1]:[0,1]:[0,0]:[0,0]:[1,1]:[1,0]:[0,1]:[1,1]:[1,0]:[0,1]:[0,1]:
[0,0]:[0,0]:[1,0]:[0,0]:[1,0]:[0,0]:[1,0]:[1,0]:[0,1]:[1,1]:[0,1]:[1,0]:
[1,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,1]:[0,0]:[0,1]:[1,0]:[0,1]:[1,1]:[0,0]:
[1,0]:[1,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,0]:[0,0]:[1,1]:[0,0]:[0,0]:[1,1]:
[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,1]:[0,0]:[1,0]:[0,0]:[1,1]:[1,1]:[1,1]:
[1,1]:[0,1]:[0,1]:[0,0]:[0,1]:[0,0]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[0,1]:
[1,1]:[1,1]:[1,1]:[1,1]:[0,1]:[1,0]:[0,0]:[0,0]:[1,1]:[1,1]:[0,1]:[0,1]:
[1,1]:[0,0]:[1,0]:[1,0]:[0,0]:[0,0]:[0,1]:[0,0]:[1,0]:[0,0]:[1,1]:[0,0]
]
[[0,0]:[0,1]:[1,0]:[1,0]:[0,0]:[1,1]:[1,1]:[0,1]:[1,1]:[1,0]:[0,1]:[1,0]:
[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,1]:[0,1]:[1,1]:[1,0]:[1,1]:
[1,0]:[1,0]:[1,1]:[1,0]:[0,1]:[0,0]:[0,0]:[0,0]:[1,1]:[0,0]:[1,1]:[0,0]:
[0,0]:[1,1]:[1,0]:[1,1]:[1,0]:[0,1]:[0,1]:[1,1]:[1,0]:[0,1]:[0,0]:[1,0]:
[0,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,1]:[0,1]:[1,1]:[1,0]:[0,0]:[0,0]:[0,0]:
[1,1]:[0,1]:[1,0]:[1,0]:[0,1]:[1,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[1,1]:
[1,0]:[1,1]:[0,0]:[0,0]:[0,1]:[0,1]:[1,0]:[1,1]:[1,0]:[0,1]:[1,0]:[1,0]:
[0,1]:[1,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[1,0]:[1,1]:[0,0]:[1,1]:[0,0]:
[1,1]:[1,0]:[0,1]:[0,1]:[0,1]:[0,1]:[0,0]:[0,0]:[1,1]:[0,0]:[1,0]:[1,1]:
[1,0]:[0,1]:[1,0]:[1,0]:[1,0]:[0,1]:[1,0]:[1,1]:[1,0]:[1,0]:[0,0]:[1,0]:
[1,0]:[0,0]:[0,1]:[1,1]:[0,1]:[1,0]:[0,0]:[1,1]:[0,0]:[1,0]:[0,1]:[0,0]:
[1,0]:[0,1]:[0,0]:[1,0]:[0,1]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[0,1]:[0,1]:
[0,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,1]:[1,1]:[1,1]:[1,0]:[1,1]:[0,0]:[0,0]:
[1,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,0]:[1,1]:[1,0]:[0,0]:[0,0]:[0,1]:[1,1]:
[1,1]:[1,0]:[0,1]:[1,1]:[0,0]:[1,0]:[1,1]:[1,0]:[1,0]:[1,0]:[1,0]:[1,1]
]
[[1,1]:[0,0]:[1,0]:[0,0]:[1,1]:[1,1]:[0,0]:[1,1]:[0,1]:[0,0]:[0,1]:[0,1]:
[1,1]:[0,1]:[1,1]:[0,0]:[0,1]:[0,1]:[0,0]:[0,1]:[1,1]:[1,0]:[0,0]:[0,1]:
[1,1]:[0,1]:[1,1]:[1,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,0]:[1,0]:[0,1]:[0,1]:
[0,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,1]:[0,1]:[1,1]:
[0,1]:[0,1]:[0,1]:[0,0]:[1,0]:[0,0]:[1,1]:[0,0]:[1,0]:[0,0]:[0,0]:[0,1]:
[0,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,1]:[1,0]:[0,1]:[1,0]:[0,1]:[1,1]:[1,1]:
[0,0]:[0,1]:[1,1]:[1,0]:[1,0]:[1,0]:[0,0]:[1,0]:[1,1]:[0,0]:[1,0]:[1,0]:
[0,1]:[1,1]:[1,1]:[0,1]:[0,1]:[0,1]:[1,1]:[0,0]:[1,0]:[0,0]:[1,0]:[0,0]:
[1,1]:[1,1]:[0,1]:[0,1]:[1,0]:[1,0]:[1,0]:[1,0]:[0,0]:[0,0]:[1,1]:[0,1]:
[0,0]:[0,1]:[1,1]:[0,1]:[0,0]:[0,1]:[1,1]:[0,1]:[1,0]:[1,1]:[0,1]:[1,1]:
[1,1]:[1,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,1]:[0,0]:[1,0]:[0,0]:[1,1]:[1,1]:
[1,1]:[1,1]:[1,0]:[1,0]:[1,1]:[0,0]:[0,1]:[0,1]:[0,0]:[1,0]:[1,0]:[1,0]:
[1,0]:[1,0]:[0,1]:[0,0]:[1,1]:[1,1]:[1,1]:[0,0]:[0,0]:[1,1]:[0,0]:[1,1]:
[1,0]:[0,0]:[1,0]:[1,0]:[0,1]:[0,0]:[0,1]:[1,1]:[0,0]:[1,0]:[0,1]:[0,1]:
[1,0]:[0,0]:[0,0]:[0,1]:[0,1]:[0,1]:[1,0]:[1,1]:[0,0]:[1,1]:[0,0]:[1,0]
]

corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]
mindist=124
weight enumerator=1 [0]  4095 [124]  9345 [128]  14595 [132]  17535 [136]  12705 [140]  5580
 [144]  1365 [148]  315 [152]  

q=5

q=5 k=7 n=58 d=39 
(using automorphisms)
( link )

code with group 127081 

generator matrix:
1111111111111111111111111111111111111111111111111111000000
1111114444440000112233441144000022223333222222333333001111
1223341223341144231414230000223311441144002233002233000023
4141411141441414230000321414232302030302232323232323111400
3422432311323223114411440000144121213434223003330220003300
4141414414113322001414004114223320302030232323323232140041
3314222423131414412332140000141412434312320320322003330000
corresponding to the solution:
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=39
weight enumerator=1 [0]  1384 [39]  1192 [40]  2400 [41]  3264 [42]  4992 [43]  7836 [44
]  8480 [45]  9528 [46]  9192 [47]  9436 [48]  8456 [49]  5472 [50]  3376
 [51]  2308 [52]  432 [53]  264 [54]  96 [56]  16 [57]  

q=7

q=7 k=5 n=24 d=17
(using automorphisms)
( link )

code with group 59898 

generator matrix:
000001111111111111111111
000110230230234444156156
111002414125360124142214
124050004214210356536241
421000005556661444333111
corresponding to the solution:
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
]
mindist=17
weight enumerator=1 [0]  966 [17]  1338 [18]  2076 [19]  2982 [20]  3894 [21]  3702 [22]  
1416 [23]  432 [24]  
q=7 k=5 n=30 d=22
(using automorphisms)
( link )

code with group 59821 

generator matrix:
000111111111111111011111111111
001011246614561236104623451334
010011533553662646453011534235
100011664263126145360232455251
000014643132342215313666320000
corresponding to the solution:
[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
mindist=22
weight enumerator=1 [0]  1122 [22]  1464 [23]  2022 [24]  2256 [25]  3666 [26]  3144 [27
]  2292 [28]  684 [29]  156 [30]  
q=7 k=5 n=36 d=27
(using automorphisms)
( link )

code with group 59705 

generator matrix:
001111111111110111111111111101111111
011456613345661004556123345610115661
024211424514566231124141201442236332
051344102322554145626323235424610163
123326440061502216252045613316551150
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
mindist=27
weight enumerator=1 [0]  1260 [27]  1560 [28]  1554 [29]  2646 [30]  2814 [31]  2898 [32
]  2478 [33]  1134 [34]  462 [35]  

q=7 k=5 n=42 d=32
(using automorphisms)
( link )

code with group 59612 

generator matrix:
000111110111111101111111011111111100001111
011124451001146610344566102555563601110056
003500514230262646546035130004555212463440
052156010006016530423066422132143122543145
156560000334616621266420016023344412431500
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0]
mindist=32
weight enumerator=1 [0]  1176 [32]  1848 [33]  1764 [34]  1848 [35]  2616 [36]  2676 [37
]  2736 [38]  1200 [39]  798 [40]  144 [41]  
q=7 k=5 n=48 d=37
(using automorphisms)
( link )

code with group 59506 

generator matrix:
001111111111111100011111111111110001111111111111
010022233455556601112334455556661110000112333446
011425516522450410125151502662354560023346022044
050433630014414530044032503260261202612456356532
163243556363553220644654062264621002435012306443
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0]
mindist=37
weight enumerator=1 [0]  1440 [37]  1248 [38]  1632 [39]  2856 [40]  2208 [41]  2112 [42
]  1536 [43]  2424 [44]  1248 [45]  96 [47]  6 [48]  
q=7 k=5 n=54 d=42
(using automorphisms)
( link )

code with group 61228 

generator matrix:
000000111111000111111111111111111111000111111111111111
000111000124111000112244112233445566111000123456124124
111124000000124222040404161616161616356666006066111111
124000124000444124204010615243342516666124650300124124
635635635635421214241241221143441625124356351624356000
corresponding to the solution:
[0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0]
mindist=42
weight enumerator=1 [0]  1416 [42]  1404 [43]  1980 [44]  1836 [45]  1746 [46]  2232 [47
]  2988 [48]  1638 [49]  864 [50]  390 [51]  216 [52]  72 [53]  24 [54
]  
q=7 k=5 n=66 d=52
(using automorphisms)
( link )

code with group 61256 

generator matrix:
001111111111111011111111111110111111011111100011110001111011111111
000113551223566102344601256661123566001224511123441110023100233300
006456251112046544403565530150443513133366011414012450453435301300
011555363452635365263223542416424436331453356425344552345366225300
100000003452635412514515621245141165554265542634161334613000000065
corresponding to the solution:
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0]
mindist=52
weight enumerator=1 [0]  1572 [52]  1260 [53]  1806 [54]  1344 [55]  1974 [56]  2520 [57
]  1974 [58]  1614 [59]  1344 [60]  672 [61]  462 [62]  258 [63]  6 [66
]  
q=7 k=5 n=79 d=63
(using automorphisms)
( link )

code with group 61228 

generator matrix:
0001111111111111111111111111111111110001111111111111111111110000001111111110011
1110001122441122334455661122334455661110001234561122334455660001110003561241100
1242220404044646264626263535663566663563330050554545234523231113560000001110024
4441242040106254453126136655123314245551243605005234256116433560003560001242400
4212142412411442152123461345152632464123563546124221151423463653654123651420000
corresponding to the solution:
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0]
mindist=63
weight enumerator=1 [0]  1422 [63]  1548 [64]  1818 [65]  1602 [66]  1842 [67]  1752 [68
]  2196 [69]  1242 [70]  1332 [71]  864 [72]  504 [73]  444 [74]  168 [75
]  72 [76]  
q=7 k=5 n=85 d=68
(using automorphisms)
( link )

code with group 78814 

generator matrix:
0011111111111111111110011111011111100111111111111001111100111110011111001111100111111
0000000011346601225561103366102256611033660334556011234611033551122335110334411022441
0113456624332450362653530636410331625624062053344125530304326451514041262230645646345
0000000153445363422432355116666353545262615351212254524515352230000000344133145646340
1615615000000063422435422661444212126131345351212615165162425544411556522455400000000
corresponding to the solution:
[1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]
mindist=68
weight enumerator=1 [0]  1512 [68]  1638 [69]  1254 [70]  1638 [71]  1890 [72]  2016 [73
]  1218 [74]  2394 [75]  1176 [76]  714 [77]  588 [78]  336 [79]  210 [80
]  126 [81]  84 [82]  12 [84]  

q=7 k=5 n=91 d=73
(using automorphisms)
( link )

code with group 59892 

generator matrix:
0111111111110001111111110001111111110011111111111111111111110000111111110110111111111111101
0011123334561111223345661110011135560101112345660122334444550111122233551151001134455550312
0305614663040365232461260041511651161221353313451316002225251045205556236036343640201125263
0625315363045024115411110330223614526056063526152322133453002152001305254500334001053666135
1426205502603124660202332635655424324066353204134244554334442462442160355213535314103451025
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0
,0,0]
mindist=73
weight enumerator=1 [0]  1332 [73]  1350 [74]  1992 [75]  1452 [76]  1656 [77]  1728 [78
]  1296 [79]  2592 [80]  1080 [81]  1092 [82]  72 [83]  582 [84]  288 [85
]  222 [87]  72 [88]  
q=7 k=5 n=100 d=81
(extension of a code using automorphisms)
( link )


generator matrix:
0011111111111111111110011111111111100111111111111001111100111110011111001111100111110111111001111111
0000000011346601225561103366011346611033660122556011234601123461101455110145511033441112244110334411
0113456624332450362653530636605511625624065115044146436412553031101455345660526223061450435142120155
0000000153445363422432355116642334245262611453534423253225452452431314534646334413310000000343646400
1615615000000063422435422661456225626131342136361000000061516512431314361515652245541112244434131300
mindist=81
weight enumerator=1 [0]  2352 [81]  1764 [82]  4746 [84]  5880 [88]  1764 [91]  294 [96]  
6 [98]  
q=7 k=6 n=59 d=44
(using automorphisms)
( link )

code with group 127160 

generator matrix:
01111111111101111111111101111111111111111111111111110111110
01235601133610455601466610044622455602233655551122341001330
04514620504460505315101365633326624142206136452306266052151
03460420226306533534636414504424631422612004400616664400252
01620654040541032065433462312136215620405133336321534351620
13444515613312226566343265511646246162563200006551644466610
corresponding to the solution:
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
mindist=44
weight enumerator=1 [0]  1890 [44]  2796 [45]  4560 [46]  6888 [47]  9660 [48]  12726 [49
]  16644 [50]  17106 [51]  17100 [52]  11316 [53]  9870 [54]  4662 [55
]  1644 [56]  660 [57]  114 [58]  12 [59]  

q=8

q=9

University of Bayreuth -