design clan: 21_44_22
21-(44,22,m*1), 1 <= m <= 11; (11/127) lambda_max=23, lambda_max_half=11
the clan contains 11 families:
- family 0, lambda = 1 containing 2 designs:
minpath=(0, 14, 0) minimal_t=5-
7-(30,8,1)
-
6-(30,8,12) 6-(29,8,11)
6-(29,7,1)
-
5-(30,8,100) (#8163) 5-(29,8,88) 5-(28,8,77) (#7919)
5-(29,7,12) 5-(28,7,11)
5-(28,6,1)
-
7-(30,8,1)
- family 1, lambda = 2 containing 12 designs:
minpath=(0, 13, 0) minimal_t=5-
8-(31,9,2)
-
7-(31,9,24) 7-(30,9,22)
7-(30,8,2)
-
6-(31,9,200) (#12296) 6-(30,9,176) 6-(29,9,154) (#12081)
6-(30,8,24) 6-(29,8,22)
6-(29,7,2)
-
5-(31,9,1300) (#8147) 5-(30,9,1100) (#8146) 5-(29,9,924) (#8145) 5-(28,9,770) (#8144)
5-(30,8,200) (#7783) 5-(29,8,176) (#7782) 5-(28,8,154) (#7781)
5-(29,7,24) (#7745) 5-(28,7,22) (#7744)
5-(28,6,2) (#7711)
-
8-(31,9,2)
- family 2, lambda = 3 containing 11 designs:
minpath=(0, 13, 0) minimal_t=5-
8-(31,9,3)
-
7-(31,9,36) 7-(30,9,33)
7-(30,8,3)
-
6-(31,9,300) (#12300) 6-(30,9,264) 6-(29,9,231)
6-(30,8,36) 6-(29,8,33)
6-(29,7,3)
-
5-(31,9,1950) (#7973) 5-(30,9,1650) (#7972) 5-(29,9,1386) (#7971) 5-(28,9,1155) (#7970)
5-(30,8,300) (#7800) 5-(29,8,264) (#7799) 5-(28,8,231) (#7798)
5-(29,7,36) (#7722) 5-(28,7,33) (#7721)
5-(28,6,3) (#7712)
-
8-(31,9,3)
- family 3, lambda = 4 containing 2 designs:
minpath=(0, 14, 0) minimal_t=5-
7-(30,8,4)
-
6-(30,8,48) 6-(29,8,44)
6-(29,7,4)
-
5-(30,8,400) 5-(29,8,352) 5-(28,8,308) (#7817)
5-(29,7,48) 5-(28,7,44)
5-(28,6,4) (#7713)
-
7-(30,8,4)
- family 4, lambda = 5 containing 4 designs:
minpath=(0, 13, 0) minimal_t=5-
8-(31,9,5)
-
7-(31,9,60) 7-(30,9,55)
7-(30,8,5)
-
6-(31,9,500) 6-(30,9,440) 6-(29,9,385)
6-(30,8,60) 6-(29,8,55)
6-(29,7,5)
-
5-(31,9,3250) 5-(30,9,2750) 5-(29,9,2310) (#8010) 5-(28,9,1925) (#8009)
5-(30,8,500) 5-(29,8,440) 5-(28,8,385) (#7831)
5-(29,7,60) 5-(28,7,55)
5-(28,6,5) (#7714)
-
8-(31,9,5)
- family 5, lambda = 6 containing 5 designs:
minpath=(0, 13, 0) minimal_t=5-
8-(31,9,6)
-
7-(31,9,72) 7-(30,9,66)
7-(30,8,6)
-
6-(31,9,600) 6-(30,9,528) 6-(29,9,462) (#12104)
6-(30,8,72) 6-(29,8,66)
6-(29,7,6)
-
5-(31,9,3900) 5-(30,9,3300) 5-(29,9,2772) (#8028) 5-(28,9,2310) (#8027)
5-(30,8,600) 5-(29,8,528) 5-(28,8,462) (#7848)
5-(29,7,72) 5-(28,7,66)
5-(28,6,6) (#7715)
-
8-(31,9,6)
- family 6, lambda = 7 containing 6 designs:
minpath=(0, 14, 0) minimal_t=5-
7-(30,8,7)
-
6-(30,8,84) 6-(29,8,77)
6-(29,7,7)
-
5-(30,8,700) (#7866) 5-(29,8,616) (#7865) 5-(28,8,539) (#7864)
5-(29,7,84) (#7759) 5-(28,7,77) (#7758)
5-(28,6,7) (#7716)
-
7-(30,8,7)
- family 7, lambda = 8 containing 38 designs:
minpath=(0, 10, 0) minimal_t=5-
11-(34,12,8)
-
10-(34,12,96) 10-(33,12,88)
10-(33,11,8)
-
9-(34,12,800) 9-(33,12,704) 9-(32,12,616)
9-(33,11,96) 9-(32,11,88)
9-(32,10,8)
-
8-(34,12,5200) 8-(33,12,4400) 8-(32,12,3696) 8-(31,12,3080) (#18034)
8-(33,11,800) 8-(32,11,704) 8-(31,11,616)
8-(32,10,96) 8-(31,10,88)
8-(31,9,8)
-
7-(34,12,28080) 7-(33,12,22880) 7-(32,12,18480) 7-(31,12,14784) (#18035) 7-(30,12,11704) (#18037)
7-(33,11,5200) 7-(32,11,4400) 7-(31,11,3696) 7-(30,11,3080) (#18036)
7-(32,10,800) 7-(31,10,704) 7-(30,10,616)
7-(31,9,96) 7-(30,9,88)
7-(30,8,8)
-
6-(34,12,131040) 6-(33,12,102960) 6-(32,12,80080) 6-(31,12,61600) (#18041) 6-(30,12,46816) (#18043) 6-(29,12,35112) (#18051)
6-(33,11,28080) 6-(32,11,22880) 6-(31,11,18480) 6-(30,11,14784) (#18042) 6-(29,11,11704) (#18048)
6-(32,10,5200) 6-(31,10,4400) 6-(30,10,3696) 6-(29,10,3080) (#18047)
6-(31,9,800) 6-(30,9,704) 6-(29,9,616)
6-(30,8,96) 6-(29,8,88)
6-(29,7,8)
-
5-(34,12,542880) (#18080) 5-(33,12,411840) (#18079) 5-(32,12,308880) (#18077) 5-(31,12,228800) (#18053) 5-(30,12,167200) (#18055) 5-(29,12,120384) (#18063) 5-(28,12,85272) (#18070)
5-(33,11,131040) (#18078) 5-(32,11,102960) (#18076) 5-(31,11,80080) (#18074) 5-(30,11,61600) (#18054) 5-(29,11,46816) (#18060) 5-(28,11,35112) (#18068)
5-(32,10,28080) (#18075) 5-(31,10,22880) (#18073) 5-(30,10,18480) (#18072) 5-(29,10,14784) (#18059) 5-(28,10,11704) (#18065)
5-(31,9,5200) (#8065) 5-(30,9,4400) (#8064) 5-(29,9,3696) (#8063) 5-(28,9,3080) (#8062)
5-(30,8,800) (#7884) 5-(29,8,704) (#7883) 5-(28,8,616) (#7882)
5-(29,7,96) (#7765) 5-(28,7,88) (#7764)
5-(28,6,8) (#7717)
-
11-(34,12,8)
- family 8, lambda = 9 containing 25 designs:
minpath=(0, 12, 0) minimal_t=5-
9-(32,10,9)
-
8-(32,10,108) 8-(31,10,99)
8-(31,9,9)
-
7-(32,10,900) 7-(31,10,792) 7-(30,10,693) (#15987)
7-(31,9,108) 7-(30,9,99)
7-(30,8,9)
-
6-(32,10,5850) (#12287) 6-(31,10,4950) (#12234) 6-(30,10,4158) (#12229) 6-(29,10,3465) (#15988)
6-(31,9,900) (#12285) 6-(30,9,792) (#12146) 6-(29,9,693) (#12143)
6-(30,8,108) (#12282) 6-(29,8,99) (#12069)
6-(29,7,9)
-
5-(32,10,31590) (#12237) 5-(31,10,25740) (#12235) 5-(30,10,20790) (#12230) 5-(29,10,16632) (#12231) 5-(28,10,13167) (#15992)
5-(31,9,5850) (#8084) 5-(30,9,4950) (#8083) 5-(29,9,4158) (#8082) 5-(28,9,3465) (#8081)
5-(30,8,900) (#7903) 5-(29,8,792) (#7902) 5-(28,8,693) (#7901)
5-(29,7,108) (#7770) 5-(28,7,99) (#7769)
5-(28,6,9) (#7718)
-
9-(32,10,9)
- family 9, lambda = 10 containing 2 designs:
minpath=(0, 14, 0) minimal_t=5-
7-(30,8,10)
-
6-(30,8,120) 6-(29,8,110)
6-(29,7,10)
-
5-(30,8,1000) 5-(29,8,880) 5-(28,8,770) (#7920)
5-(29,7,120) 5-(28,7,110)
5-(28,6,10) (#7708)
-
7-(30,8,10)
- family 10, lambda = 11 containing 20 designs:
minpath=(0, 12, 0) minimal_t=5-
9-(32,10,11)
-
8-(32,10,132) 8-(31,10,121)
8-(31,9,11)
-
7-(32,10,1100) 7-(31,10,968) 7-(30,10,847) (#16033)
7-(31,9,132) 7-(30,9,121)
7-(30,8,11)
-
6-(32,10,7150) 6-(31,10,6050) 6-(30,10,5082) (#12259) 6-(29,10,4235) (#16035)
6-(31,9,1100) 6-(30,9,968) 6-(29,9,847) (#16034)
6-(30,8,132) 6-(29,8,121)
6-(29,7,11) (#11992)
-
5-(32,10,38610) (#12267) 5-(31,10,31460) (#12265) 5-(30,10,25410) (#12260) 5-(29,10,20328) (#12261) 5-(28,10,16093) (#16040)
5-(31,9,7150) (#12002) 5-(30,9,6050) (#12000) 5-(29,9,5082) (#8124) 5-(28,9,4235) (#8123)
5-(30,8,1100) (#11999) 5-(29,8,968) (#11997) 5-(28,8,847) (#7936)
5-(29,7,132) (#11993) 5-(28,7,121) (#11994)
5-(28,6,11) (#7709)
-
9-(32,10,11)
created: Fri Oct 23 11:21:30 CEST 2009