t designs with small t, id ge 7700
# 7700: 5-(28,14,213785)
- clan: 11-(30,15,1014), 4 times reduced t, 1 times derived, 1 times residual
- \cite{Sebille98} $AGL(3,3)+$
- Tran van Trung construction with complementary design for 5-(27,13,83655) (# 11093)
- design 6-(28,14,83655) (# 11096) with respect to smaller t
- Tran van Trung construction (left) for 5-(27,14,130130) (# 11101) : der= 5-(27,13,83655) and res= 5-(27,14,130130) - the given design is the residual.
- supplementary design of 6-(28,14,236115) (# 11105) with respect to smaller t
- clan: 9-(32,16,23166), 2 times derived, 2 times residual
- $PGL(2,25)++$
- clan: 9-(32,16,50820), 2 times derived, 2 times residual
- $PGL(2,25)++$
- clan: 7-(30,15,139425), 1 times derived, 1 times residual
- $PGL(2,25)++$
- clan: 7-(30,15,57057), 1 times derived, 1 times residual
- $PGL(2,25)++$
- clan: 7-(30,15,21021), 1 times derived, 1 times residual
- $PGL(2,25)++$
- clan: 13-(30,15,52), 6 times reduced t, 1 times derived, 1 times residual
- \cite{Sebille98} $AGL(3,3)+$
- Tran van Trung construction with complementary design for 5-(27,13,122265) (# 11285)
- design 6-(28,14,122265) (# 11288) with respect to smaller t
- Tran van Trung construction (left) for 5-(27,14,190190) (# 11293) : der= 5-(27,13,122265) and res= 5-(27,14,190190) - the given design is the residual.
- supplementary design of 6-(28,14,197505) (# 11297) with respect to smaller t
- clan: 13-(32,16,429), 4 times reduced t, 2 times derived, 2 times residual
- \cite{Sebille98} $AGL(3,3)+$
- Tran van Trung construction with complementary design for 5-(27,13,141570) (# 10202)
- design 6-(28,14,141570) (# 11382) with respect to smaller t
- Tran van Trung construction (left) for 5-(27,14,220220) (# 11386) : der= 5-(27,13,141570) and res= 5-(27,14,220220) - the given design is the residual.
- supplementary design of 6-(28,14,178200) (# 11390) with respect to smaller t
- residual design of 6-(29,14,217074) (# 13637)
- residual design of supplementary of 6-(29,14,273240) (# 13638)
- derived from 6-(29,15,361790) (# 13647)
- derived from supplementary of 6-(29,15,455400) (# 13648)
- clan: 21-(44,22,10), 16 times derived
- $PSL(2,27)$ 22461654 isomorphism types \cite{KreherRadziszowski87a} \cite{Schmalz}
- clan: 21-(44,22,11), 16 times derived
- $PSL(2,27)$ 28068645 isomorphism types \cite{KreherRadziszowski87a} \cite{Schmalz}
- $PSU(3,9)$ many isomorphism types
- derived from 6-(29,7,11) (# 11992)
- clan: 21-(44,22,12), 16 times derived
- $PSU(3,9)$ many isomorphism types
- derived from supplementary of 6-(29,7,11) (# 11992)
- clan: 21-(44,22,2), 16 times derived
- $PGL(2,13)\times C_2$ 11 solutions
- $PSL(2,27)$ 20 isomorphism types \cite{KreherRadziszowski87a} \cite{Schmalz}
- clan: 21-(44,22,3), 16 times derived
- $PSL(2,27)$ 695 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- clan: 21-(44,22,4), 16 times derived
- $PSL(2,27)$ 6132 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- clan: 21-(44,22,5), 16 times derived
- $PSL(2,27)$ 74882 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- $PSU(3,9)$ 5724 isomorphism types
- clan: 21-(44,22,6), 16 times derived
- $PSL(2,27)$ 370650 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- $PSU(3,9)$ 5290 isomorphism types
- clan: 21-(44,22,7), 16 times derived
- $PSL(2,27)$ 1707742 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- clan: 21-(44,22,8), 16 times derived
- $PSL(2,27)$ 5710925 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- $PSU(3,9)$ 539278 isomorphism types
- clan: 21-(44,22,9), 16 times derived
- $PSL(2,27)$ 11496089 isomorphism types \cite{KreherRadziszowski87a}\cite{Schmalz}
- $PSU(3,9)$ many isomorphism types
- clan: 8-(31,10,1), 3 times derived
- Steiner system ! $PGL(2,27)$ (1 isom. type) \cite{Denniston76}
- clan: 8-(31,10,30), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 15000}$
- clan: 21-(44,22,3), 15 times derived, 1 times residual
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- clan: 21-(44,22,3), 1 times reduced t, 15 times derived
- Tran van Trung construction (left) for 5-(28,7,33) (# 7721) : der= 5-(28,6,3) and res= 5-(28,7,33) - the given design is the residual.
- clan: 8-(31,10,40), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- clan: 8-(31,10,43), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- $ {\bf P\Gamma L(2,27)} 49$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,43) (# 12029)
- clan: 8-(31,10,60), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- clan: 8-(31,10,63), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- $ {\bf P\Gamma L(2,27)} 385$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,63) (# 12041)
- derived from supplementary of 6-(29,8,190) (# 16059)
- clan: 8-(31,10,70), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- $ {\bf P\Gamma L(2,27)} 702$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,70) (# 12049)
- clan: 8-(31,10,73), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- clan: 8-(31,10,90), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- clan: 8-(31,10,93), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- $S_8^{[2]}$ (1 isom. type)
- derived from 6-(29,8,93) (# 18023)
- derived from supplementary of 6-(29,8,160) (# 18025)
- clan: 8-(31,10,100), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- derived from 6-(29,8,100) (# 18006)
- derived from supplementary of 6-(29,8,153) (# 18008)
- clan: 8-(31,10,103), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- clan: 8-(31,10,120), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- $ {\bf P\Gamma L(2,27)} 4652$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,120) (# 12014)
- derived from supplementary of 6-(29,8,133) (# 12020)
- clan: 8-(31,10,123), 3 times derived
- $ {\bf P\Gamma L(2,25)\oplus C_2\ \ge 1}$
- $ {\bf C_2\times PSL(2,13)} \geq 1$
- clan: 8-(31,10,105), 3 times derived
- $ {\bf P\Gamma L(2,27)} 3055$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,105) (# 12003)
- derived from supplementary of 6-(29,8,148) (# 16048)
- clan: 8-(31,10,106), 3 times derived
- $ {\bf P\Gamma L(2,27)} 3055$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,106) (# 12007)
- clan: 8-(31,10,112), 3 times derived
- $ {\bf P\Gamma L(2,27)} 4926$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,112) (# 12011)
- derived from supplementary of 6-(29,8,141) (# 16053)
- clan: 8-(31,10,113), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,119), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,126), 3 times derived
- $ {\bf P\Gamma L(2,27)} 3580$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,126) (# 12017)
- clan: 8-(31,10,14), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,15), 3 times derived
- $ {\bf P\Gamma L(2,27)} 1$ % -group 3 PGGL 2 27 PGGL_2_27
- clan: 8-(31,10,21), 3 times derived
- $ {\bf P\Gamma L(2,27)} 10$ % -group 3 PGGL 2 27 PGGL_2_27
- clan: 21-(44,22,2), 15 times derived, 1 times residual
- $ {\bf P\Gamma L(2,27)} 10$ % -group 3 PGGL 2 27 PGGL_2_27
- clan: 21-(44,22,2), 1 times reduced t, 15 times derived
- Tran van Trung construction (left) for 5-(28,7,22) (# 7744) : der= 5-(28,6,2) and res= 5-(28,7,22) - the given design is the residual.
- $PGL(2,27)+$ (>=1 isom. types)
- clan: 8-(31,10,28), 3 times derived
- $ {\bf P\Gamma L(2,27)} 10$ % -group 3 PGGL 2 27 PGGL_2_27
- clan: 8-(31,10,29), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,35), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,36), 3 times derived
- $ {\bf P\Gamma L(2,27)} 24$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,36) (# 12021)
- clan: 8-(31,10,42), 3 times derived
- $ {\bf P\Gamma L(2,27)} 49$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,42) (# 12025)
- clan: 8-(31,10,49), 3 times derived
- $ {\bf P\Gamma L(2,27)} 215$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,49) (# 12033)
- clan: 8-(31,10,50), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,56), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,57), 3 times derived
- $ {\bf P\Gamma L(2,27)} 332$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,57) (# 12037)
- clan: 8-(31,10,64), 3 times derived
- $ {\bf P\Gamma L(2,27)} 385$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,64) (# 12045)
- derived from supplementary of 6-(29,8,189) (# 16066)
- clan: 8-(31,10,7), 3 times derived
- $ {\bf PSL(2,27)} $ (2 isom. types) % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,71), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 21-(44,22,7), 15 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 21-(44,22,7), 1 times reduced t, 15 times derived
- Tran van Trung construction (left) for 5-(28,7,77) (# 7758) : der= 5-(28,6,7) and res= 5-(28,7,77) - the given design is the residual.
- $PGL(2,27)+$ (>=1 isom. types)
- clan: 8-(31,10,78), 3 times derived
- $ {\bf P\Gamma L(2,27)} 1298$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,78) (# 12053)
- clan: 8-(31,10,8), 3 times derived
- $ {\bf PSL(2,27)} $ (2 isom. types) % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,84), 3 times derived
- $ {\bf P\Gamma L(2,27)} 1634$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,84) (# 12057)
- clan: 8-(31,10,85), 3 times derived
- $ {\bf P\Gamma L(2,27)} 1634$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,85) (# 12061)
- clan: 21-(44,22,8), 15 times derived, 1 times residual
- $ {\bf PSL(2,13)\times C_2}$
- clan: 21-(44,22,8), 1 times reduced t, 15 times derived
- Tran van Trung construction (left) for 5-(28,7,88) (# 7764) : der= 5-(28,6,8) and res= 5-(28,7,88) - the given design is the residual.
- clan: 8-(31,10,91), 3 times derived
- $ {\bf P\Gamma L(2,27)} 1579$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,91) (# 12065)
- clan: 9-(31,10,8), 1 times reduced t, 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,98), 3 times derived
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 21-(44,22,9), 15 times derived, 1 times residual
- $ {\bf P\Gamma L(2,27)} 1929$ % -group 3 PGGL 2 27 PGGL_2_27
- derived from 6-(29,8,99) (# 12069)
- clan: 21-(44,22,9), 1 times reduced t, 15 times derived
- Tran van Trung construction (left) for 5-(28,7,99) (# 7769) : der= 5-(28,6,9) and res= 5-(28,7,99) - the given design is the residual.
- $PGL(2,27)+$ (>=1 isom. types)
- derived from 6-(30,8,108) (# 12282)
- clan: 21-(44,22,13), 14 times derived, 2 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,15), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- derived from 6-(29,9,105) (# 12073)
- clan: 8-(31,10,15), 1 times reduced t, 2 times derived
- Tran van Trung construction (left) for 5-(28,8,105) (# 7772) : der= 5-(28,7,15) and res= 5-(28,8,105) - the given design is the residual.
- clan: 8-(31,10,16), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,17), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,18), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- derived from 6-(29,9,126) (# 12077)
- clan: 8-(31,10,19), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,20), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,21), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,21), 1 times reduced t, 2 times derived
- Tran van Trung construction (left) for 5-(28,8,147) (# 7779) : der= 5-(28,7,21) and res= 5-(28,8,147) - the given design is the residual.
- clan: 21-(44,22,2), 14 times derived, 2 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- derived from 6-(29,9,154) (# 12081)
- clan: 21-(44,22,2), 1 times reduced t, 14 times derived, 1 times residual
- Tran van Trung construction (left) for 5-(28,8,154) (# 7781) : der= 5-(28,7,22) and res= 5-(28,8,154) - the given design is the residual.
- clan: 21-(44,22,2), 2 times reduced t, 14 times derived
- Tran van Trung construction (left) for 5-(29,8,176) (# 7782) : der= 5-(29,7,24) and res= 5-(29,8,176) - the given design is the residual.
- derived from 6-(31,9,200) (# 12296)
- clan: 9-(31,10,2), 1 times reduced t, 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,24), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,25), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,26), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,27), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,28), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,28), 1 times reduced t, 2 times derived
- Tran van Trung construction (left) for 5-(28,8,196) (# 7789) : der= 5-(28,7,28) and res= 5-(28,8,196) - the given design is the residual.
- clan: 8-(31,10,29), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,29), 1 times reduced t, 2 times derived
- Tran van Trung construction (left) for 5-(28,8,203) (# 7791) : der= 5-(28,7,29) and res= 5-(28,8,203) - the given design is the residual.
- clan: 8-(31,10,3), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,30), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,30), 1 times reduced t, 2 times derived
- Tran van Trung construction (left) for 5-(28,8,210) (# 7794) : der= 5-(28,7,30) and res= 5-(28,8,210) - the given design is the residual.
- clan: 8-(31,10,31), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 8-(31,10,32), 2 times derived, 1 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 21-(44,22,3), 14 times derived, 2 times residual
- $ {\bf PSL(2,27)} \geq 1$ % -group 3 PSL 2 27 PSL_2_27
- clan: 21-(44,22,3), 1 times reduced t, 14 times derived, 1 times residual
- Tran van Trung construction (left) for 5-(28,8,231) (# 7798) : der= 5-(28,7,33) and res= 5-(28,8,231) - the given design is the residual.
created: Fri Oct 23 11:11:32 CEST 2009