design clan: 7_20_10
7-(20,10,m*2), 1 <= m <= 71; (56/282) lambda_max=286, lambda_max_half=143
the clan contains 56 families:
- family 0, lambda = 6 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,6)
-
6-(20,10,21) 6-(19,10,15)
6-(19,9,6)
-
5-(20,10,63) (#571) 5-(19,10,42) (#572) 5-(18,10,27)
5-(19,9,21) (#570) 5-(18,9,15) (#569)
5-(18,8,6) (#503)
-
7-(20,10,6)
- family 1, lambda = 12 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,12)
-
6-(20,10,42) 6-(19,10,30)
6-(19,9,12)
-
5-(20,10,126) (#925) 5-(19,10,84) 5-(18,10,54)
5-(19,9,42) 5-(18,9,30) (#691)
5-(18,8,12)
-
7-(20,10,12)
- family 2, lambda = 14 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,14)
-
6-(20,10,49) 6-(19,10,35)
6-(19,9,14)
-
5-(20,10,147) (#730) 5-(19,10,98) (#731) 5-(18,10,63)
5-(19,9,49) (#729) 5-(18,9,35) (#728)
5-(18,8,14) (#484)
-
7-(20,10,14)
- family 3, lambda = 16 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,16)
-
6-(20,10,56) 6-(19,10,40)
6-(19,9,16)
-
5-(20,10,168) (#742) 5-(19,10,112) (#743) 5-(18,10,72)
5-(19,9,56) (#741) 5-(18,9,40) (#740)
5-(18,8,16) (#487)
-
7-(20,10,16)
- family 4, lambda = 18 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,18)
-
6-(20,10,63) 6-(19,10,45)
6-(19,9,18)
-
5-(20,10,189) (#926) 5-(19,10,126) 5-(18,10,81)
5-(19,9,63) 5-(18,9,45) (#744)
5-(18,8,18)
-
7-(20,10,18)
- family 5, lambda = 20 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,20)
-
6-(20,10,70) 6-(19,10,50)
6-(19,9,20)
-
5-(20,10,210) (#927) 5-(19,10,140) 5-(18,10,90)
5-(19,9,70) 5-(18,9,50) (#745)
5-(18,8,20)
-
7-(20,10,20)
- family 6, lambda = 24 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,24)
-
6-(20,10,84) 6-(19,10,60)
6-(19,9,24)
-
5-(20,10,252) (#929) 5-(19,10,168) 5-(18,10,108)
5-(19,9,84) 5-(18,9,60) (#747)
5-(18,8,24)
-
7-(20,10,24)
- family 7, lambda = 28 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,28)
-
6-(20,10,98) 6-(19,10,70)
6-(19,9,28)
-
5-(20,10,294) (#931) 5-(19,10,196) 5-(18,10,126)
5-(19,9,98) 5-(18,9,70) (#749)
5-(18,8,28)
-
7-(20,10,28)
- family 8, lambda = 30 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,30)
-
6-(20,10,105) 6-(19,10,75)
6-(19,9,30)
-
5-(20,10,315) (#752) 5-(19,10,210) (#753) 5-(18,10,135)
5-(19,9,105) (#751) 5-(18,9,75) (#750)
5-(18,8,30) (#488)
-
7-(20,10,30)
- family 9, lambda = 32 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,32)
-
6-(20,10,112) 6-(19,10,80)
6-(19,9,32)
-
5-(20,10,336) (#756) 5-(19,10,224) (#757) 5-(18,10,144)
5-(19,9,112) (#755) 5-(18,9,80) (#754)
5-(18,8,32) (#489)
-
7-(20,10,32)
- family 10, lambda = 34 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,34)
-
6-(20,10,119) 6-(19,10,85)
6-(19,9,34)
-
5-(20,10,357) (#932) 5-(19,10,238) 5-(18,10,153)
5-(19,9,119) 5-(18,9,85) (#758)
5-(18,8,34)
-
7-(20,10,34)
- family 11, lambda = 36 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,36)
-
6-(20,10,126) 6-(19,10,90)
6-(19,9,36)
-
5-(20,10,378) (#761) 5-(19,10,252) (#762) 5-(18,10,162)
5-(19,9,126) (#760) 5-(18,9,90) (#759)
5-(18,8,36) (#490)
-
7-(20,10,36)
- family 12, lambda = 38 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,38)
-
6-(20,10,133) 6-(19,10,95)
6-(19,9,38)
-
5-(20,10,399) (#765) 5-(19,10,266) (#766) 5-(18,10,171)
5-(19,9,133) (#764) 5-(18,9,95) (#763)
5-(18,8,38) (#491)
-
7-(20,10,38)
- family 13, lambda = 40 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,40)
-
6-(20,10,140) 6-(19,10,100)
6-(19,9,40)
-
5-(20,10,420) (#527) 5-(19,10,280) (#528) 5-(18,10,180)
5-(19,9,140) (#526) 5-(18,9,100) (#525)
5-(18,8,40) (#492)
-
7-(20,10,40)
- family 14, lambda = 42 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,42)
-
6-(20,10,147) 6-(19,10,105)
6-(19,9,42)
-
5-(20,10,441) (#531) 5-(19,10,294) (#532) 5-(18,10,189)
5-(19,9,147) (#530) 5-(18,9,105) (#529)
5-(18,8,42) (#493)
-
7-(20,10,42)
- family 15, lambda = 46 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,46)
-
6-(20,10,161) 6-(19,10,115)
6-(19,9,46)
-
5-(20,10,483) (#543) 5-(19,10,322) (#544) 5-(18,10,207)
5-(19,9,161) (#542) 5-(18,9,115) (#541)
5-(18,8,46) (#496)
-
7-(20,10,46)
- family 16, lambda = 48 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,48)
-
6-(20,10,168) 6-(19,10,120)
6-(19,9,48)
-
5-(20,10,504) (#547) 5-(19,10,336) (#548) 5-(18,10,216)
5-(19,9,168) (#546) 5-(18,9,120) (#545)
5-(18,8,48) (#497)
-
7-(20,10,48)
- family 17, lambda = 50 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,50)
-
6-(20,10,175) 6-(19,10,125)
6-(19,9,50)
-
5-(20,10,525) (#551) 5-(19,10,350) (#552) 5-(18,10,225)
5-(19,9,175) (#550) 5-(18,9,125) (#549)
5-(18,8,50) (#498)
-
7-(20,10,50)
- family 18, lambda = 54 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,54)
-
6-(20,10,189) 6-(19,10,135)
6-(19,9,54)
-
5-(20,10,567) (#559) 5-(19,10,378) (#560) 5-(18,10,243)
5-(19,9,189) (#558) 5-(18,9,135) (#557)
5-(18,8,54) (#500)
-
7-(20,10,54)
- family 19, lambda = 56 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,56)
-
6-(20,10,196) 6-(19,10,140)
6-(19,9,56)
-
5-(20,10,588) (#563) 5-(19,10,392) (#564) 5-(18,10,252)
5-(19,9,196) (#562) 5-(18,9,140) (#561)
5-(18,8,56) (#501)
-
7-(20,10,56)
- family 20, lambda = 58 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,58)
-
6-(20,10,203) 6-(19,10,145)
6-(19,9,58)
-
5-(20,10,609) (#567) 5-(19,10,406) (#568) 5-(18,10,261)
5-(19,9,203) (#566) 5-(18,9,145) (#565)
5-(18,8,58) (#502)
-
7-(20,10,58)
- family 21, lambda = 60 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,60)
-
6-(20,10,210) 6-(19,10,150)
6-(19,9,60)
-
5-(20,10,630) (#575) 5-(19,10,420) (#576) 5-(18,10,270)
5-(19,9,210) (#574) 5-(18,9,150) (#573)
5-(18,8,60) (#504)
-
7-(20,10,60)
- family 22, lambda = 62 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,62)
-
6-(20,10,217) 6-(19,10,155)
6-(19,9,62)
-
5-(20,10,651) (#579) 5-(19,10,434) (#580) 5-(18,10,279)
5-(19,9,217) (#578) 5-(18,9,155) (#577)
5-(18,8,62) (#505)
-
7-(20,10,62)
- family 23, lambda = 64 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,64)
-
6-(20,10,224) 6-(19,10,160)
6-(19,9,64)
-
5-(20,10,672) (#583) 5-(19,10,448) (#584) 5-(18,10,288)
5-(19,9,224) (#582) 5-(18,9,160) (#581)
5-(18,8,64) (#506)
-
7-(20,10,64)
- family 24, lambda = 68 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,68)
-
6-(20,10,238) 6-(19,10,170)
6-(19,9,68)
-
5-(20,10,714) (#594) 5-(19,10,476) (#595) 5-(18,10,306)
5-(19,9,238) (#593) 5-(18,9,170) (#592)
5-(18,8,68) (#509)
-
7-(20,10,68)
- family 25, lambda = 70 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,70)
-
6-(20,10,245) 6-(19,10,175)
6-(19,9,70)
-
5-(20,10,735) (#598) 5-(19,10,490) (#599) 5-(18,10,315)
5-(19,9,245) (#597) 5-(18,9,175) (#596)
5-(18,8,70) (#510)
-
7-(20,10,70)
- family 26, lambda = 72 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,72)
-
6-(20,10,252) 6-(19,10,180)
6-(19,9,72)
-
5-(20,10,756) (#602) 5-(19,10,504) (#603) 5-(18,10,324)
5-(19,9,252) (#601) 5-(18,9,180) (#600)
5-(18,8,72) (#511)
-
7-(20,10,72)
- family 27, lambda = 74 containing 4 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,74)
-
6-(20,10,259) 6-(19,10,185)
6-(19,9,74)
-
5-(20,10,777) (#776) 5-(19,10,518) (#777) 5-(18,10,333)
5-(19,9,259) (#775) 5-(18,9,185) (#604)
5-(18,8,74)
-
7-(20,10,74)
- family 28, lambda = 76 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,76)
-
6-(20,10,266) 6-(19,10,190)
6-(19,9,76)
-
5-(20,10,798) (#607) 5-(19,10,532) (#608) 5-(18,10,342)
5-(19,9,266) (#606) 5-(18,9,190) (#605)
5-(18,8,76) (#512)
-
7-(20,10,76)
- family 29, lambda = 80 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,80)
-
6-(20,10,280) 6-(19,10,200)
6-(19,9,80)
-
5-(20,10,840) (#611) 5-(19,10,560) (#612) 5-(18,10,360)
5-(19,9,280) (#610) 5-(18,9,200) (#609)
5-(18,8,80) (#513)
-
7-(20,10,80)
- family 30, lambda = 82 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,82)
-
6-(20,10,287) 6-(19,10,205)
6-(19,9,82)
-
5-(20,10,861) (#615) 5-(19,10,574) (#616) 5-(18,10,369)
5-(19,9,287) (#614) 5-(18,9,205) (#613)
5-(18,8,82) (#514)
-
7-(20,10,82)
- family 31, lambda = 84 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,84)
-
6-(20,10,294) 6-(19,10,210)
6-(19,9,84)
-
5-(20,10,882) (#619) 5-(19,10,588) (#620) 5-(18,10,378)
5-(19,9,294) (#618) 5-(18,9,210) (#617)
5-(18,8,84) (#515)
-
7-(20,10,84)
- family 32, lambda = 86 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,86)
-
6-(20,10,301) 6-(19,10,215)
6-(19,9,86)
-
5-(20,10,903) (#623) 5-(19,10,602) (#624) 5-(18,10,387)
5-(19,9,301) (#622) 5-(18,9,215) (#621)
5-(18,8,86) (#516)
-
7-(20,10,86)
- family 33, lambda = 90 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,90)
-
6-(20,10,315) 6-(19,10,225)
6-(19,9,90)
-
5-(20,10,945) (#639) 5-(19,10,630) (#640) 5-(18,10,405)
5-(19,9,315) (#638) 5-(18,9,225) (#637)
5-(18,8,90) (#520)
-
7-(20,10,90)
- family 34, lambda = 92 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,92)
-
6-(20,10,322) 6-(19,10,230)
6-(19,9,92)
-
5-(20,10,966) (#643) 5-(19,10,644) (#644) 5-(18,10,414)
5-(19,9,322) (#642) 5-(18,9,230) (#641)
5-(18,8,92) (#521)
-
7-(20,10,92)
- family 35, lambda = 94 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,94)
-
6-(20,10,329) 6-(19,10,235)
6-(19,9,94)
-
5-(20,10,987) (#647) 5-(19,10,658) (#648) 5-(18,10,423)
5-(19,9,329) (#646) 5-(18,9,235) (#645)
5-(18,8,94) (#522)
-
7-(20,10,94)
- family 36, lambda = 96 containing 6 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,96)
-
6-(20,10,336) (#8655) 6-(19,10,240)
6-(19,9,96)
-
5-(20,10,1008) (#651) 5-(19,10,672) (#652) 5-(18,10,432)
5-(19,9,336) (#650) 5-(18,9,240) (#649)
5-(18,8,96) (#523)
-
7-(20,10,96)
- family 37, lambda = 98 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,98)
-
6-(20,10,343) 6-(19,10,245)
6-(19,9,98)
-
5-(20,10,1029) (#655) 5-(19,10,686) (#656) 5-(18,10,441)
5-(19,9,343) (#654) 5-(18,9,245) (#653)
5-(18,8,98) (#524)
-
7-(20,10,98)
- family 38, lambda = 100 containing 4 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,100)
-
6-(20,10,350) 6-(19,10,250)
6-(19,9,100)
-
5-(20,10,1050) (#779) 5-(19,10,700) (#780) 5-(18,10,450)
5-(19,9,350) (#778) 5-(18,9,250) (#657)
5-(18,8,100)
-
7-(20,10,100)
- family 39, lambda = 102 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,102)
-
6-(20,10,357) 6-(19,10,255)
6-(19,9,102)
-
5-(20,10,1071) (#660) 5-(19,10,714) (#661) 5-(18,10,459)
5-(19,9,357) (#659) 5-(18,9,255) (#658)
5-(18,8,102) (#467)
-
7-(20,10,102)
- family 40, lambda = 106 containing 4 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,106)
-
6-(20,10,371) 6-(19,10,265)
6-(19,9,106)
-
5-(20,10,1113) (#782) 5-(19,10,742) (#783) 5-(18,10,477)
5-(19,9,371) (#781) 5-(18,9,265) (#662)
5-(18,8,106)
-
7-(20,10,106)
- family 41, lambda = 108 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,108)
-
6-(20,10,378) 6-(19,10,270)
6-(19,9,108)
-
5-(20,10,1134) (#665) 5-(19,10,756) (#666) 5-(18,10,486)
5-(19,9,378) (#664) 5-(18,9,270) (#663)
5-(18,8,108) (#468)
-
7-(20,10,108)
- family 42, lambda = 112 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,112)
-
6-(20,10,392) 6-(19,10,280)
6-(19,9,112)
-
5-(20,10,1176) (#681) 5-(19,10,784) (#682) 5-(18,10,504)
5-(19,9,392) (#680) 5-(18,9,280) (#679)
5-(18,8,112) (#472)
-
7-(20,10,112)
- family 43, lambda = 114 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,114)
-
6-(20,10,399) 6-(19,10,285)
6-(19,9,114)
-
5-(20,10,1197) (#685) 5-(19,10,798) (#686) 5-(18,10,513)
5-(19,9,399) (#684) 5-(18,9,285) (#683)
5-(18,8,114) (#473)
-
7-(20,10,114)
- family 44, lambda = 116 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(20,10,116) (#8621)
-
6-(20,10,406) (#8620) 6-(19,10,290) (#8622)
6-(19,9,116) (#8618)
-
5-(20,10,1218) (#785) 5-(19,10,812) (#786) 5-(18,10,522) (#8628)
5-(19,9,406) (#784) 5-(18,9,290) (#54)
5-(18,8,116) (#8619)
-
4-(20,10,3248) 4-(19,10,2030) 4-(18,10,1218) 4-(17,10,696)
4-(19,9,1218) 4-(18,9,812) 4-(17,9,522)
4-(18,8,406) 4-(17,8,290) (#53)
4-(17,7,116)
-
7-(20,10,116) (#8621)
- family 45, lambda = 118 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,118)
-
6-(20,10,413) 6-(19,10,295)
6-(19,9,118)
-
5-(20,10,1239) (#689) 5-(19,10,826) (#690) 5-(18,10,531)
5-(19,9,413) (#688) 5-(18,9,295) (#687)
5-(18,8,118) (#474)
-
7-(20,10,118)
- family 46, lambda = 120 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,120)
-
6-(20,10,420) 6-(19,10,300)
6-(19,9,120)
-
5-(20,10,1260) (#694) 5-(19,10,840) (#695) 5-(18,10,540)
5-(19,9,420) (#693) 5-(18,9,300) (#692)
5-(18,8,120) (#475)
-
7-(20,10,120)
- family 47, lambda = 122 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,122)
-
6-(20,10,427) 6-(19,10,305)
6-(19,9,122)
-
5-(20,10,1281) (#698) 5-(19,10,854) (#699) 5-(18,10,549)
5-(19,9,427) (#697) 5-(18,9,305) (#696)
5-(18,8,122) (#476)
-
7-(20,10,122)
- family 48, lambda = 124 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5 - family 49, lambda = 126 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5 - family 50, lambda = 128 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,128)
-
6-(20,10,448) 6-(19,10,320)
6-(19,9,128)
-
5-(20,10,1344) (#710) 5-(19,10,896) (#711) 5-(18,10,576)
5-(19,9,448) (#709) 5-(18,9,320) (#708)
5-(18,8,128) (#479)
-
7-(20,10,128)
- family 51, lambda = 134 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5 - family 52, lambda = 136 containing 6 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,136)
-
6-(20,10,476) (#8657) 6-(19,10,340)
6-(19,9,136)
-
5-(20,10,1428) (#722) 5-(19,10,952) (#723) 5-(18,10,612)
5-(19,9,476) (#721) 5-(18,9,340) (#720)
5-(18,8,136) (#482)
-
7-(20,10,136)
- family 53, lambda = 138 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,138)
-
6-(20,10,483) 6-(19,10,345)
6-(19,9,138)
-
5-(20,10,1449) (#726) 5-(19,10,966) (#727) 5-(18,10,621)
5-(19,9,483) (#725) 5-(18,9,345) (#724)
5-(18,8,138) (#483)
-
7-(20,10,138)
- family 54, lambda = 140 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,140)
-
6-(20,10,490) 6-(19,10,350)
6-(19,9,140)
-
5-(20,10,1470) (#734) 5-(19,10,980) (#735) 5-(18,10,630)
5-(19,9,490) (#733) 5-(18,9,350) (#732)
5-(18,8,140) (#485)
-
7-(20,10,140)
- family 55, lambda = 142 containing 5 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(20,10,142)
-
6-(20,10,497) 6-(19,10,355)
6-(19,9,142)
-
5-(20,10,1491) (#738) 5-(19,10,994) (#739) 5-(18,10,639)
5-(19,9,497) (#737) 5-(18,9,355) (#736)
5-(18,8,142) (#486)
-
7-(20,10,142)
created: Fri Oct 23 11:20:46 CEST 2009