t designs with small t, id ge 400
# 400: 4-(33,8,9828)
- clan: 27-(56,28,12), 20 times derived, 3 times residual
- $M_{11}\times C_3$
- clan: 14-(62,15,24), 10 times derived
- $P\Gamma L(2,25)\times Id_2$ halving
- clan: 11-(63,12,12), 7 times derived
- $PSL(3,4)a$
- clan: 11-(63,12,16), 7 times derived
- $PSL(3,4)a$
- clan: 11-(63,12,24), 7 times derived
- $PSL(3,4)a$
- clan: 10-(63,12,196), 6 times derived
- $PSL(3,7)$ 189 solutions
- clan: 9-(62,12,294), 5 times derived
- $PSL(3,7)$ 189 solutions
- clan: 28-(90,30,60), 24 times derived
- $PSL(2,24)+$
- clan: 28-(90,30,151), 24 times derived
- $PSL(2,24)+$
- clan: 28-(90,30,360), 24 times derived
- $PSL(2,24)+$
- clan: 28-(90,30,420), 24 times derived
- $PSL(2,24)+$
- clan: 5-(82,6,5), 1 times derived
- $A\Gamma L(2,9)$
- $ASL(4,3)$ no. of 4-sets = no. of blocks
- clan: 5-(82,6,36), 1 times derived
- $A\Gamma L(2,9)$
- clan: 4-(81,6,36)
- $ASL(4,3)$
- clan: 101-(204,102,1), 96 times derived
- $PSL(2,107)$ \cite{GrannellGriggsMathon} >= 1000 isomorphism types
- clan: 6-(14,7,4), 1 times derived
- \cite{Kreher86a} $C_{13})$ 2 isomorphism types
- derived from 6-(14,7,4) (# 417)
- derived from supplementary of 6-(14,7,4) (# 417)
- clan: 6-(14,7,4), 1 times reduced t
- Tran van Trung construction with complementary design for 5-(13,6,4) (# 415)
- Tran van Trung construction (right) for 5-(13,6,4) (# 415) : der= 5-(13,6,4) and res= 5-(13,7,14) - the given design is the derived.
- design 6-(14,7,4) (# 417) with respect to smaller t
- supplementary design of 6-(14,7,4) (# 417) with respect to smaller t
- Tran van Trung construction (left) for 5-(13,7,14) (# 418) : der= 5-(13,6,4) and res= 5-(13,7,14) - the given design is the residual.
- $LS[2](5,7,14)$ $C_{13}+$
- clan: 6-(14,7,4)
- Alltop construction for design 5-(13,6,4) (# 415)
- $A_4$ (1 isom. type) \cite{LBH2001}
- $C_3$ (4 isom. types) \cite{EslamiKhosrovshahi2001}
- $C_7$ (2 isom. types) \cite{KhosrovshahiMohammadNooriTayfehRezaie2001}
- $C_2$ (4 isom. types) \cite{KhosrovshahiMohammadNooriTayfehRezaie2001}
- $C_{13}+$ (2 isom. types) \cite{KreherRadziszowski86}, Halving of the complete design
- clan: 6-(14,7,4), 1 times residual
- complementary design of 5-(13,6,4) (# 415)
- residual design of 6-(14,7,4) (# 417)
- residual design of supplementary of 6-(14,7,4) (# 417)
- clan: 125-(252,126,1), 120 times derived
- $PSL(2,131)$ \cite{GrannellGriggsMathon} >= 100 isomorphism types
- clan: 7-(16,8,3), 2 times derived
- $C_{13}C_3+$ 1 isomorphism type Brouwer 1977/1986
- clan: 7-(16,8,3), 1 times derived, 1 times residual
- $C_4xId_3$ (halving of the complete design),
- $LS[3](5,7,14)$ Alltop-extension $LS[3](4,6,13)$
- clan: 7-(16,8,3), 1 times reduced t, 1 times derived
- Tran van Trung construction (left) for 5-(14,7,12) (# 421) : der= 5-(14,6,3) and res= 5-(14,7,12) - the given design is the residual.
- clan: 7-(16,8,3), 1 times reduced t, 1 times residual
- complementary design of 5-(15,7,15) (# 422)
- clan: 9-(20,10,3), 4 times derived
- Brouwer 1977/1986
- $D_8\times C_2$ >= 86 solutions
- $PSL(2,7)\times Id_2$ 3 solutions
- $PSL(2,7)\times C_2$ 1 solution
- $PGL(2,7)\times C_2$ 1 solution
- $PGL(2,7) twist C_2$ 3 solutions
- $PGL(2,7)\times Id_2$ 1 solution
- clan: 9-(20,10,4), 4 times derived
- $D_8\times C_2$
- $D_{16}$
- clan: 9-(20,10,5), 4 times derived
- Brouwer 1977/1986
- $PSL(2,7)\times Id_2$ 12 solutions
- $PSL(2,7)\times C_2$ 4 solutions
- $PGL(2,7) twist C_2$ 4 solutions
- clan: 9-(20,10,3), 3 times derived, 1 times residual
- $A_4\times D_4$ 42 solutions
- $Hol(C_8)\times C_2$ 56 solutions
- Brouwer 1977/1986
- clan: 9-(20,10,3), 1 times reduced t, 3 times derived
- Tran van Trung construction (left) for 5-(16,7,15) (# 427) : der= 5-(16,6,3) and res= 5-(16,7,15) - the given design is the residual.
- $(A_4\times D_4)+$ (many isom. types)
- clan: 9-(20,10,3), 1 times reduced t, 2 times derived, 1 times residual
- Tran van Trung construction (right) for 5-(16,7,15) (# 427) : der= 5-(16,7,15) and res= 5-(16,8,45) - the given design is the derived.
- clan: 9-(20,10,3), 2 times reduced t, 2 times derived
- Tran van Trung construction (right) for 5-(17,7,18) (# 428) : der= 5-(17,7,18) and res= 5-(17,8,60) - the given design is the derived.
- Tran van Trung construction (left) for 5-(17,8,60) (# 429) : der= 5-(17,7,18) and res= 5-(17,8,60) - the given design is the residual.
- \cite{Kramer75} $PGL(2,17)$ 8 isomorphism types TvT: 5-(17,7,18) $\cup$ 5-(17,8,60) \cite{TranvanTrung86}
- clan: 9-(20,10,3), 2 times reduced t, 1 times derived, 1 times residual
- Tran van Trung construction with complementary design for 5-(17,8,60) (# 429)
- Tran van Trung construction (right) for 5-(17,8,60) (# 429) : der= 5-(17,8,60) and res= 5-(17,9,135) - the given design is the derived.
- Tran van Trung construction (left) for 5-(17,9,135) (# 432) : der= 5-(17,8,60) and res= 5-(17,9,135) - the given design is the residual.
- \cite{Brouwer86} Alltop(res(5-(18,8,78))
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type
- clan: 9-(20,10,3), 1 times reduced t, 1 times derived, 2 times residual
- complementary design of 5-(17,8,60) (# 429)
- clan: 9-(20,10,3), 3 times reduced t, 1 times derived
- Tran van Trung construction (right) for 5-(18,8,78) (# 430) : der= 5-(18,8,78) and res= 5-(18,9,195) - the given design is the derived.
- Tran van Trung construction (left) for 5-(18,9,195) (# 431) : der= 5-(18,8,78) and res= 5-(18,9,195) - the given design is the residual.
- $ {\bf PSL(2,17)}^+ $ % -group 4 PSL 2 17 Add_fixpoint PSL_2_17+
- clan: 9-(20,10,3), 4 times reduced t
- Tran van Trung construction with complementary design for 5-(19,9,273) (# 433)
- Tran van Trung construction (right) for 5-(19,9,273) (# 433) : der= 5-(19,9,273) and res= 5-(19,10,546) - the given design is the derived.
- Tran van Trung construction (left) for 5-(19,10,546) (# 435) : der= 5-(19,9,273) and res= 5-(19,10,546) - the given design is the residual.
- \cite{Krameretal85}
- \cite{TranvanTrung86}
- clan: 9-(20,10,3), 3 times reduced t, 1 times residual
- complementary design of 5-(19,9,273) (# 433)
- clan: 9-(20,10,4), 3 times derived, 1 times residual
- $Hol(C_8)\times C_2$ 126784 solutions
- $D_4\times D_4$
- $HoL(C_{16})$ Wassermann 152 solutions
- clan: 9-(20,10,4), 1 times reduced t, 3 times derived
- Tran van Trung construction (left) for 5-(16,7,20) (# 436) : der= 5-(16,6,4) and res= 5-(16,7,20) - the given design is the residual.
- Brouwer 1977/1986 $Hol(C_{17})$
- clan: 9-(20,10,4), 1 times reduced t, 2 times derived, 1 times residual
- Tran van Trung construction (right) for 5-(16,7,20) (# 436) : der= 5-(16,7,20) and res= 5-(16,8,60) - the given design is the derived.
- \cite{Kramer75} $PGL(2,16)$
- clan: 9-(20,10,4), 2 times reduced t, 2 times derived
- Tran van Trung construction (right) for 5-(17,7,24) (# 437) : der= 5-(17,7,24) and res= 5-(17,8,80) - the given design is the derived.
- Tran van Trung construction (left) for 5-(17,8,80) (# 438) : der= 5-(17,7,24) and res= 5-(17,8,80) - the given design is the residual.
- $C_2\times PGL(2,8)$
- \cite{Kramer75}
- clan: 9-(20,10,4), 2 times reduced t, 1 times derived, 1 times residual
- Tran van Trung construction with complementary design for 5-(17,8,80) (# 438)
- Tran van Trung construction (right) for 5-(17,8,80) (# 438) : der= 5-(17,8,80) and res= 5-(17,9,180) - the given design is the derived.
- Tran van Trung construction (left) for 5-(17,9,180) (# 441) : der= 5-(17,8,80) and res= 5-(17,9,180) - the given design is the residual.
- \cite{Brouwer86} $Hol(C_17)+$
- \cite{Brouwer86} Alltop(res(5-(18,8,104))
- \cite{Kramer75} $PGL(2,16)+$ 16 isomorphism types
- clan: 9-(20,10,4), 1 times reduced t, 1 times derived, 2 times residual
- complementary design of 5-(17,8,80) (# 438)
- clan: 9-(20,10,4), 3 times reduced t, 1 times derived
- Tran van Trung construction (right) for 5-(18,8,104) (# 439) : der= 5-(18,8,104) and res= 5-(18,9,260) - the given design is the derived.
- Tran van Trung construction (left) for 5-(18,9,260) (# 440) : der= 5-(18,8,104) and res= 5-(18,9,260) - the given design is the residual.
- $ {\bf PSL(2,17)}^+ $ % -group 4 PSL 2 17 Add_fixpoint PSL_2_17+
- clan: 9-(20,10,4), 4 times reduced t
- Tran van Trung construction with complementary design for 5-(19,9,364) (# 442)
- Tran van Trung construction (right) for 5-(19,9,364) (# 442) : der= 5-(19,9,364) and res= 5-(19,10,728) - the given design is the derived.
- Tran van Trung construction (left) for 5-(19,10,728) (# 444) : der= 5-(19,9,364) and res= 5-(19,10,728) - the given design is the residual.
- \cite{Krameretal85} $PSL(2,19)$
- clan: 9-(20,10,4), 3 times reduced t, 1 times residual
- complementary design of 5-(19,9,364) (# 442)
- clan: 9-(20,10,5), 3 times derived, 1 times residual
- $A_4\times A_4$
- $C_4\times A_4$
- $Hol(C_8)\times C_2$ 1259640 solutions
- clan: 9-(20,10,5), 1 times reduced t, 3 times derived
- Tran van Trung construction (left) for 5-(16,7,25) (# 445) : der= 5-(16,6,5) and res= 5-(16,7,25) - the given design is the residual.
- clan: 9-(20,10,5), 1 times reduced t, 2 times derived, 1 times residual
- Tran van Trung construction (right) for 5-(16,7,25) (# 445) : der= 5-(16,7,25) and res= 5-(16,8,75) - the given design is the derived.
- clan: 9-(20,10,5), 2 times reduced t, 2 times derived
- Tran van Trung construction (right) for 5-(17,7,30) (# 446) : der= 5-(17,7,30) and res= 5-(17,8,100) - the given design is the derived.
- Tran van Trung construction (left) for 5-(17,8,100) (# 447) : der= 5-(17,7,30) and res= 5-(17,8,100) - the given design is the residual.
- \cite{Kramer75} $PGL(2,17)$ 11 isomorphism types
- clan: 9-(20,10,5), 2 times reduced t, 1 times derived, 1 times residual
- Tran van Trung construction with complementary design for 5-(17,8,100) (# 447)
- Tran van Trung construction (right) for 5-(17,8,100) (# 447) : der= 5-(17,8,100) and res= 5-(17,9,225) - the given design is the derived.
- Tran van Trung construction (left) for 5-(17,9,225) (# 450) : der= 5-(17,8,100) and res= 5-(17,9,225) - the given design is the residual.
- $Ico\times Octa$ 13216 solutions
- \cite{Kramer75} $PGL(2,17)$ 3 isomorphism types
- clan: 9-(20,10,5), 1 times reduced t, 1 times derived, 2 times residual
- complementary design of 5-(17,8,100) (# 447)
- clan: 9-(20,10,5), 3 times reduced t, 1 times derived
- Tran van Trung construction (right) for 5-(18,8,130) (# 448) : der= 5-(18,8,130) and res= 5-(18,9,325) - the given design is the derived.
- Tran van Trung construction (left) for 5-(18,9,325) (# 449) : der= 5-(18,8,130) and res= 5-(18,9,325) - the given design is the residual.
- $ {\bf PSL(2,17)}^+ $ % -group 4 PSL 2 17 Add_fixpoint PSL_2_17+
- clan: 9-(20,10,5), 4 times reduced t
- Tran van Trung construction with complementary design for 5-(19,9,455) (# 451)
- Tran van Trung construction (right) for 5-(19,9,455) (# 451) : der= 5-(19,9,455) and res= 5-(19,10,910) - the given design is the derived.
- Tran van Trung construction (left) for 5-(19,10,910) (# 453) : der= 5-(19,9,455) and res= 5-(19,10,910) - the given design is the residual.
- \cite{Krameretal85} $PGL(2,19)$
- \cite{TranvanTrung86}
- clan: 9-(20,10,5), 3 times reduced t, 1 times residual
- complementary design of 5-(19,9,455) (# 451)
- clan: 161-(324,162,1), 156 times derived
- $PSL(2,167)$ \cite{Mathon} >= 4 isomorphism types
- clan: 9-(20,10,2), 1 times reduced t, 3 times derived
- Brouwer 1977/1986
- clan: 9-(20,10,6), 1 times reduced t, 3 times derived
- $Hol(C_{17})$
- clan: 11-(24,12,4), 6 times derived
- \cite{Kramer75} $PGL(2,17)$ 2 isomorphism types
- derived from 6-(19,7,4) (# 8609)
- clan: 11-(24,12,5), 6 times derived
- \cite{Brouwer86}
- clan: 11-(24,12,2), 5 times derived, 1 times residual
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type
- clan: 11-(24,12,3), 5 times derived, 1 times residual
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type
- clan: 11-(24,12,4), 5 times derived, 1 times residual
- \cite{Kramer75} $PGL(2,17)$ 2 isomorphism types
- residual design of 6-(19,7,4) (# 8609)
- clan: 11-(24,12,4), 1 times reduced t, 5 times derived
- Tran van Trung construction (left) for 5-(18,7,24) (# 461) : der= 5-(18,6,4) and res= 5-(18,7,24) - the given design is the residual.
- $Hol(C_{19})$ (>=1 isom. types)
- Brouwer 1977/1986
- design 6-(19,7,4) (# 8609) with respect to smaller t
- derived from 6-(20,8,28) (# 8658)
- clan: 11-(24,12,5), 5 times derived, 1 times residual
- \cite{Kramer75} $PGL(2,17)$ 2 isomorphism types
- clan: 11-(24,12,5), 1 times reduced t, 5 times derived
- Tran van Trung construction (left) for 5-(18,7,30) (# 463) : der= 5-(18,6,5) and res= 5-(18,7,30) - the given design is the residual.
- Brouwer 1977/1986
- clan: 11-(24,12,6), 5 times derived, 1 times residual
- \cite{Kramer75} $PGL(2,17)$ 4 isomorphism types
- residual design of 6-(19,7,6) (# 8613)
- clan: 11-(24,12,1), 5 times derived, 1 times residual
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type, block-transitive
- clan: 7-(20,10,102), 2 times derived
- $C_2\times ASL(2,3)$
- clan: 7-(20,10,108), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 12 isomorphism types
- clan: 11-(24,12,5), 4 times derived, 2 times residual
- \cite{Kramer75} $PGL(2,17)$ 6 isomorphism types $PGL(2,16)+$ 32 isomorphism types
- clan: 11-(24,12,5), 1 times reduced t, 4 times derived, 1 times residual
- Tran van Trung construction (left) for 5-(18,8,110) (# 469) : der= 5-(18,7,30) and res= 5-(18,8,110) - the given design is the residual.
- clan: 11-(24,12,5), 2 times reduced t, 4 times derived
- Tran van Trung construction (left) for 5-(19,8,140) (# 470) : der= 5-(19,7,35) and res= 5-(19,8,140) - the given design is the residual.
- \cite{Krameretal85} $PGL(2,19)$ 343 isomorphism types
- clan: 7-(20,10,112), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 6 isomorphism types
- clan: 7-(20,10,114), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 9 isomorphism types
- clan: 7-(20,10,118), 2 times derived
- $C_2\times PGL(2,8)$
- $PSL(2,8)\times C_2$ (many solutions)
- clan: 7-(20,10,120), 2 times derived
- $C_2\times ASL(2,3)$
- $T(2,3) \wr C_2$
- clan: 7-(20,10,122), 2 times derived
- $Id_2\times PGL(2,8)$
- clan: 7-(20,10,124), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 15 isomorphism types
- derived from 6-(19,9,124) (# 8631)
- derived from supplementary of 6-(19,9,162) (# 8638)
- clan: 7-(20,10,126), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 6 isomorphism types
- $C_2\times PGL(2,8)$
- $PSL(2,8)\times C_2$ (many solutions)
- derived from 6-(19,9,126) (# 8643)
- derived from supplementary of 6-(19,9,160) (# 8650)
- clan: 7-(20,10,128), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 5 isomorphism types
- clan: 11-(24,12,6), 4 times derived, 2 times residual
- $Id_2\times PGL(2,8)$
- $PSL(2,8)\times Id_2$ (many solutions)
- clan: 11-(24,12,6), 1 times reduced t, 4 times derived, 1 times residual
- Tran van Trung construction (left) for 5-(18,8,132) (# 480) : der= 5-(18,7,36) and res= 5-(18,8,132) - the given design is the residual.
- clan: 7-(20,10,136), 2 times derived
- $C_2\times PGL(2,8)$
- clan: 7-(20,10,138), 2 times derived
- $T(2,3) \wr C_2$
- clan: 7-(20,10,14), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type
- clan: 7-(20,10,140), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 14 isomorphism types
- clan: 7-(20,10,142), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 5 isomorphism types
- clan: 7-(20,10,16), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type, block-transitive
- clan: 7-(20,10,30), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type
- clan: 7-(20,10,32), 2 times derived
- \cite{Kramer75} $PGL(2,17)$ 3 isomorphism types
- clan: 7-(20,10,36), 2 times derived
- $Id_2\times ASL(2,3)$ 70 solutions
- clan: 7-(20,10,38), 2 times derived
- $C_2\times PGL(2,8)$ 129 solutions
- clan: 7-(20,10,40), 2 times derived
- $C_2\times ASL(2,3)$ 6 solutions
- $PGL(2,16)+$ 1 isomorphism type
- \cite{MacWilliams78}
- clan: 7-(20,10,42), 2 times derived
- $Id_2\times PGL(2,8)$ 738 solutions
- clan: 11-(24,12,2), 4 times derived, 2 times residual
- \cite{Kramer75} $PGL(2,17)$ 1 isomorphism type
- clan: 11-(24,12,2), 1 times reduced t, 4 times derived, 1 times residual
- Tran van Trung construction (left) for 5-(18,8,44) (# 494) : der= 5-(18,7,12) and res= 5-(18,8,44) - the given design is the residual.
- clan: 7-(20,10,46), 2 times derived
- $C_2\times ASL(2,3)$ 24 solutions
- \cite{Kramer75} $PGL(2,17)$ 3 isomorphism types $PGL(2,16)+$ 1 isomorphism type
- clan: 7-(20,10,48), 2 times derived
- $C_2\times ASL(2,3)$ 858 solutions
- $C_2\times PGL(2,8)$ 465 solutions
- \cite{Kramer75} $PGL(2,17)$ 5 isomorphism types
- clan: 7-(20,10,50), 2 times derived
- $ASL(2,3)\times Id_2$ (many solutions)
- clan: 9-(20,10,2), 2 times reduced t, 2 times derived
- $PSL(2,8)\times Id_2$ (many solutions)
created: Fri Oct 23 11:09:31 CEST 2009