´

design clan: 13_30_15


13-(30,15,m*4), 1 <= m <= 17; (8/222) lambda_max=136, lambda_max_half=68
the clan contains 8 families:
  • family 0, lambda = 4 containing 18 designs:

    minpath=(0, 0, 0) minimal_t=4
    • 13-(30,15,4)

    • 12-(30,15,24) 12-(29,15,20)
      12-(29,14,4)

    • 11-(30,15,114) 11-(29,15,90) 11-(28,15,70)
      11-(29,14,24) 11-(28,14,20)
      11-(28,13,4)

    • 10-(30,15,456) 10-(29,15,342) 10-(28,15,252) 10-(27,15,182)
      10-(29,14,114) 10-(28,14,90) 10-(27,14,70)
      10-(28,13,24) 10-(27,13,20)
      10-(27,12,4)

    • 9-(30,15,1596) 9-(29,15,1140) 9-(28,15,798) 9-(27,15,546) 9-(26,15,364)
      9-(29,14,456) 9-(28,14,342) 9-(27,14,252) 9-(26,14,182)
      9-(28,13,114) 9-(27,13,90) 9-(26,13,70)
      9-(27,12,24) 9-(26,12,20)
      9-(26,11,4)

    • 8-(30,15,5016) 8-(29,15,3420) 8-(28,15,2280) 8-(27,15,1482) 8-(26,15,936) 8-(25,15,572)
      8-(29,14,1596) 8-(28,14,1140) 8-(27,14,798) 8-(26,14,546) 8-(25,14,364)
      8-(28,13,456) 8-(27,13,342) 8-(26,13,252) 8-(25,13,182)
      8-(27,12,114) 8-(26,12,90) 8-(25,12,70)
      8-(26,11,24) 8-(25,11,20)
      8-(25,10,4)

    • 7-(30,15,14421) 7-(29,15,9405) 7-(28,15,5985) 7-(27,15,3705) 7-(26,15,2223) 7-(25,15,1287) 7-(24,15,715)
      7-(29,14,5016) 7-(28,14,3420) 7-(27,14,2280) 7-(26,14,1482) 7-(25,14,936) 7-(24,14,572)
      7-(28,13,1596) 7-(27,13,1140) 7-(26,13,798) 7-(25,13,546) 7-(24,13,364)
      7-(27,12,456) 7-(26,12,342) 7-(25,12,252) 7-(24,12,182)
      7-(26,11,114) 7-(25,11,90) 7-(24,11,70)
      7-(25,10,24) 7-(24,10,20)
      7-(24,9,4)

    • 6-(30,15,38456) 6-(29,15,24035) 6-(28,15,14630) 6-(27,15,8645) 6-(26,15,4940) 6-(25,15,2717) 6-(24,15,1430) 6-(23,15,715)
      6-(29,14,14421) 6-(28,14,9405) 6-(27,14,5985) 6-(26,14,3705) 6-(25,14,2223) 6-(24,14,1287) 6-(23,14,715)
      6-(28,13,5016) 6-(27,13,3420) 6-(26,13,2280) 6-(25,13,1482) 6-(24,13,936) 6-(23,13,572)
      6-(27,12,1596) 6-(26,12,1140) 6-(25,12,798) 6-(24,12,546) 6-(23,12,364)
      6-(26,11,456) 6-(25,11,342) 6-(24,11,252) 6-(23,11,182)
      6-(25,10,114) 6-(24,10,90) 6-(23,10,70)
      6-(24,9,24) 6-(23,9,20)
      6-(23,8,4)

    • 5-(30,15,96140) (#6304) 5-(29,15,57684) 5-(28,15,33649) 5-(27,15,19019) 5-(26,15,10374) 5-(25,15,5434) 5-(24,15,2717) 5-(23,15,1287) 5-(22,15,572)
      5-(29,14,38456) (#6303) 5-(28,14,24035) (#2564) 5-(27,14,14630) 5-(26,14,8645) 5-(25,14,4940) 5-(24,14,2717) 5-(23,14,1430) 5-(22,14,715)
      5-(28,13,14421) (#6302) 5-(27,13,9405) (#2563) 5-(26,13,5985) (#2561) 5-(25,13,3705) 5-(24,13,2223) 5-(23,13,1287) 5-(22,13,715)
      5-(27,12,5016) (#6301) 5-(26,12,3420) (#2562) 5-(25,12,2280) (#2560) 5-(24,12,1482) (#2559) 5-(23,12,936) 5-(22,12,572)
      5-(26,11,1596) (#6300) 5-(25,11,1140) (#1664) 5-(24,11,798) (#1663) 5-(23,11,546) 5-(22,11,364) (#174)
      5-(25,10,456) (#6299) 5-(24,10,342) (#1419) 5-(23,10,252) 5-(22,10,182)
      5-(24,9,114) (#6298) 5-(23,9,90) 5-(22,9,70)
      5-(23,8,24) 5-(22,8,20)
      5-(22,7,4)

    • 4-(30,15,227240) 4-(29,15,131100) 4-(28,15,73416) 4-(27,15,39767) 4-(26,15,20748) 4-(25,15,10374) 4-(24,15,4940) 4-(23,15,2223) 4-(22,15,936) 4-(21,15,364)
      4-(29,14,96140) 4-(28,14,57684) 4-(27,14,33649) 4-(26,14,19019) 4-(25,14,10374) 4-(24,14,5434) 4-(23,14,2717) 4-(22,14,1287) 4-(21,14,572)
      4-(28,13,38456) 4-(27,13,24035) 4-(26,13,14630) 4-(25,13,8645) 4-(24,13,4940) 4-(23,13,2717) 4-(22,13,1430) 4-(21,13,715)
      4-(27,12,14421) 4-(26,12,9405) 4-(25,12,5985) 4-(24,12,3705) 4-(23,12,2223) 4-(22,12,1287) 4-(21,12,715)
      4-(26,11,5016) 4-(25,11,3420) 4-(24,11,2280) 4-(23,11,1482) 4-(22,11,936) 4-(21,11,572)
      4-(25,10,1596) 4-(24,10,1140) 4-(23,10,798) 4-(22,10,546) 4-(21,10,364) (#173)
      4-(24,9,456) 4-(23,9,342) 4-(22,9,252) 4-(21,9,182)
      4-(23,8,114) 4-(22,8,90) 4-(21,8,70)
      4-(22,7,24) 4-(21,7,20)
      4-(21,6,4)

  • family 1, lambda = 12 containing 25 designs:

    minpath=(0, 0, 0) minimal_t=4
    • 13-(30,15,12)

    • 12-(30,15,72) 12-(29,15,60)
      12-(29,14,12)

    • 11-(30,15,342) 11-(29,15,270) 11-(28,15,210)
      11-(29,14,72) 11-(28,14,60)
      11-(28,13,12)

    • 10-(30,15,1368) 10-(29,15,1026) 10-(28,15,756) 10-(27,15,546)
      10-(29,14,342) 10-(28,14,270) 10-(27,14,210)
      10-(28,13,72) 10-(27,13,60)
      10-(27,12,12)

    • 9-(30,15,4788) 9-(29,15,3420) 9-(28,15,2394) 9-(27,15,1638) 9-(26,15,1092)
      9-(29,14,1368) 9-(28,14,1026) 9-(27,14,756) 9-(26,14,546)
      9-(28,13,342) 9-(27,13,270) 9-(26,13,210)
      9-(27,12,72) 9-(26,12,60)
      9-(26,11,12)

    • 8-(30,15,15048) 8-(29,15,10260) 8-(28,15,6840) 8-(27,15,4446) 8-(26,15,2808) 8-(25,15,1716)
      8-(29,14,4788) 8-(28,14,3420) 8-(27,14,2394) 8-(26,14,1638) 8-(25,14,1092)
      8-(28,13,1368) 8-(27,13,1026) 8-(26,13,756) 8-(25,13,546)
      8-(27,12,342) 8-(26,12,270) 8-(25,12,210)
      8-(26,11,72) 8-(25,11,60)
      8-(25,10,12)

    • 7-(30,15,43263) 7-(29,15,28215) 7-(28,15,17955) 7-(27,15,11115) 7-(26,15,6669) 7-(25,15,3861) 7-(24,15,2145)
      7-(29,14,15048) 7-(28,14,10260) 7-(27,14,6840) 7-(26,14,4446) 7-(25,14,2808) 7-(24,14,1716)
      7-(28,13,4788) 7-(27,13,3420) 7-(26,13,2394) 7-(25,13,1638) 7-(24,13,1092)
      7-(27,12,1368) 7-(26,12,1026) 7-(25,12,756) 7-(24,12,546)
      7-(26,11,342) 7-(25,11,270) 7-(24,11,210)
      7-(25,10,72) 7-(24,10,60)
      7-(24,9,12)

    • 6-(30,15,115368) 6-(29,15,72105) 6-(28,15,43890) 6-(27,15,25935) 6-(26,15,14820) 6-(25,15,8151) 6-(24,15,4290) 6-(23,15,2145)
      6-(29,14,43263) 6-(28,14,28215) 6-(27,14,17955) 6-(26,14,11115) 6-(25,14,6669) 6-(24,14,3861) 6-(23,14,2145)
      6-(28,13,15048) 6-(27,13,10260) 6-(26,13,6840) 6-(25,13,4446) 6-(24,13,2808) 6-(23,13,1716)
      6-(27,12,4788) 6-(26,12,3420) 6-(25,12,2394) 6-(24,12,1638) 6-(23,12,1092)
      6-(26,11,1368) 6-(25,11,1026) 6-(24,11,756) 6-(23,11,546)
      6-(25,10,342) 6-(24,10,270) 6-(23,10,210)
      6-(24,9,72) 6-(23,9,60)
      6-(23,8,12)

    • 5-(30,15,288420) (#7037) 5-(29,15,173052) 5-(28,15,100947) 5-(27,15,57057) 5-(26,15,31122) 5-(25,15,16302) 5-(24,15,8151) 5-(23,15,3861) 5-(22,15,1716)
      5-(29,14,115368) (#7036) 5-(28,14,72105) (#1215) 5-(27,14,43890) 5-(26,14,25935) 5-(25,14,14820) 5-(24,14,8151) 5-(23,14,4290) 5-(22,14,2145)
      5-(28,13,43263) (#7035) 5-(27,13,28215) (#1214) 5-(26,13,17955) (#1213) 5-(25,13,11115) 5-(24,13,6669) 5-(23,13,3861) 5-(22,13,2145)
      5-(27,12,15048) (#7034) 5-(26,12,10260) (#1212) 5-(25,12,6840) (#1211) 5-(24,12,4446) (#1089) 5-(23,12,2808) 5-(22,12,1716)
      5-(26,11,4788) (#7033) 5-(25,11,3420) (#1210) 5-(24,11,2394) (#1209) 5-(23,11,1638) (#1088) 5-(22,11,1092) (#64)
      5-(25,10,1368) (#7032) 5-(24,10,1026) (#1208) 5-(23,10,756) (#1207) 5-(22,10,546) (#1087)
      5-(24,9,342) (#7031) 5-(23,9,270) (#1206) 5-(22,9,210) (#1205)
      5-(23,8,72) 5-(22,8,60) (#1173)
      5-(22,7,12)

    • 4-(30,15,681720) 4-(29,15,393300) 4-(28,15,220248) 4-(27,15,119301) 4-(26,15,62244) 4-(25,15,31122) 4-(24,15,14820) 4-(23,15,6669) 4-(22,15,2808) 4-(21,15,1092)
      4-(29,14,288420) 4-(28,14,173052) 4-(27,14,100947) 4-(26,14,57057) 4-(25,14,31122) 4-(24,14,16302) 4-(23,14,8151) 4-(22,14,3861) 4-(21,14,1716)
      4-(28,13,115368) 4-(27,13,72105) 4-(26,13,43890) 4-(25,13,25935) 4-(24,13,14820) 4-(23,13,8151) 4-(22,13,4290) 4-(21,13,2145)
      4-(27,12,43263) 4-(26,12,28215) 4-(25,12,17955) 4-(24,12,11115) 4-(23,12,6669) 4-(22,12,3861) 4-(21,12,2145)
      4-(26,11,15048) 4-(25,11,10260) 4-(24,11,6840) 4-(23,11,4446) 4-(22,11,2808) 4-(21,11,1716)
      4-(25,10,4788) 4-(24,10,3420) 4-(23,10,2394) 4-(22,10,1638) 4-(21,10,1092) (#63)
      4-(24,9,1368) 4-(23,9,1026) 4-(22,9,756) 4-(21,9,546)
      4-(23,8,342) 4-(22,8,270) 4-(21,8,210)
      4-(22,7,72) 4-(21,7,60)
      4-(21,6,12) (#356)

  • family 2, lambda = 20 containing 5 designs:

    minpath=(0, 3, 0) minimal_t=5
    • 10-(27,12,20)

    • 9-(27,12,120) 9-(26,12,100)
      9-(26,11,20)

    • 8-(27,12,570) 8-(26,12,450) 8-(25,12,350)
      8-(26,11,120) 8-(25,11,100)
      8-(25,10,20)

    • 7-(27,12,2280) 7-(26,12,1710) 7-(25,12,1260) 7-(24,12,910)
      7-(26,11,570) 7-(25,11,450) 7-(24,11,350)
      7-(25,10,120) 7-(24,10,100)
      7-(24,9,20)

    • 6-(27,12,7980) 6-(26,12,5700) 6-(25,12,3990) 6-(24,12,2730) 6-(23,12,1820)
      6-(26,11,2280) 6-(25,11,1710) 6-(24,11,1260) 6-(23,11,910)
      6-(25,10,570) 6-(24,10,450) 6-(23,10,350)
      6-(24,9,120) 6-(23,9,100)
      6-(23,8,20)

    • 5-(27,12,25080) 5-(26,12,17100) 5-(25,12,11400) 5-(24,12,7410) (#4742) 5-(23,12,4680) 5-(22,12,2860)
      5-(26,11,7980) 5-(25,11,5700) 5-(24,11,3990) 5-(23,11,2730) 5-(22,11,1820)
      5-(25,10,2280) (#7222) 5-(24,10,1710) (#1317) 5-(23,10,1260) 5-(22,10,910)
      5-(24,9,570) (#7221) 5-(23,9,450) 5-(22,9,350)
      5-(23,8,120) 5-(22,8,100) (#1155)
      5-(22,7,20)

  • family 3, lambda = 28 containing 23 designs:

    minpath=(0, 0, 0) minimal_t=4
    • 13-(30,15,28)

    • 12-(30,15,168) 12-(29,15,140)
      12-(29,14,28)

    • 11-(30,15,798) 11-(29,15,630) 11-(28,15,490)
      11-(29,14,168) 11-(28,14,140)
      11-(28,13,28)

    • 10-(30,15,3192) 10-(29,15,2394) 10-(28,15,1764) 10-(27,15,1274)
      10-(29,14,798) 10-(28,14,630) 10-(27,14,490)
      10-(28,13,168) 10-(27,13,140)
      10-(27,12,28)

    • 9-(30,15,11172) 9-(29,15,7980) 9-(28,15,5586) 9-(27,15,3822) 9-(26,15,2548)
      9-(29,14,3192) 9-(28,14,2394) 9-(27,14,1764) 9-(26,14,1274)
      9-(28,13,798) 9-(27,13,630) 9-(26,13,490)
      9-(27,12,168) 9-(26,12,140)
      9-(26,11,28)

    • 8-(30,15,35112) 8-(29,15,23940) 8-(28,15,15960) 8-(27,15,10374) 8-(26,15,6552) 8-(25,15,4004)
      8-(29,14,11172) 8-(28,14,7980) 8-(27,14,5586) 8-(26,14,3822) 8-(25,14,2548)
      8-(28,13,3192) 8-(27,13,2394) 8-(26,13,1764) 8-(25,13,1274)
      8-(27,12,798) 8-(26,12,630) 8-(25,12,490)
      8-(26,11,168) 8-(25,11,140)
      8-(25,10,28)

    • 7-(30,15,100947) 7-(29,15,65835) 7-(28,15,41895) 7-(27,15,25935) 7-(26,15,15561) 7-(25,15,9009) 7-(24,15,5005)
      7-(29,14,35112) 7-(28,14,23940) 7-(27,14,15960) 7-(26,14,10374) 7-(25,14,6552) 7-(24,14,4004)
      7-(28,13,11172) 7-(27,13,7980) 7-(26,13,5586) 7-(25,13,3822) 7-(24,13,2548)
      7-(27,12,3192) (#14642) 7-(26,12,2394) 7-(25,12,1764) 7-(24,12,1274)
      7-(26,11,798) 7-(25,11,630) 7-(24,11,490)
      7-(25,10,168) 7-(24,10,140)
      7-(24,9,28)

    • 6-(30,15,269192) 6-(29,15,168245) 6-(28,15,102410) 6-(27,15,60515) 6-(26,15,34580) 6-(25,15,19019) 6-(24,15,10010) 6-(23,15,5005)
      6-(29,14,100947) 6-(28,14,65835) 6-(27,14,41895) 6-(26,14,25935) 6-(25,14,15561) 6-(24,14,9009) 6-(23,14,5005)
      6-(28,13,35112) 6-(27,13,23940) 6-(26,13,15960) 6-(25,13,10374) 6-(24,13,6552) 6-(23,13,4004)
      6-(27,12,11172) (#10773) 6-(26,12,7980) (#14644) 6-(25,12,5586) 6-(24,12,3822) 6-(23,12,2548)
      6-(26,11,3192) (#14643) 6-(25,11,2394) 6-(24,11,1764) 6-(23,11,1274)
      6-(25,10,798) 6-(24,10,630) 6-(23,10,490)
      6-(24,9,168) 6-(23,9,140)
      6-(23,8,28)

    • 5-(30,15,672980) (#14663) 5-(29,15,403788) 5-(28,15,235543) 5-(27,15,133133) 5-(26,15,72618) 5-(25,15,38038) 5-(24,15,19019) 5-(23,15,9009) 5-(22,15,4004)
      5-(29,14,269192) (#14661) 5-(28,14,168245) (#14657) 5-(27,14,102410) 5-(26,14,60515) 5-(25,14,34580) 5-(24,14,19019) 5-(23,14,10010) 5-(22,14,5005)
      5-(28,13,100947) (#14658) 5-(27,13,65835) (#14655) 5-(26,13,41895) (#14653) 5-(25,13,25935) 5-(24,13,15561) 5-(23,13,9009) 5-(22,13,5005)
      5-(27,12,35112) (#10774) 5-(26,12,23940) (#10776) 5-(25,12,15960) (#14651) 5-(24,12,10374) (#1754) 5-(23,12,6552) 5-(22,12,4004)
      5-(26,11,11172) (#10775) 5-(25,11,7980) (#14648) 5-(24,11,5586) 5-(23,11,3822) 5-(22,11,2548)
      5-(25,10,3192) (#7433) 5-(24,10,2394) (#1358) 5-(23,10,1764) 5-(22,10,1274)
      5-(24,9,798) (#7432) 5-(23,9,630) (#1246) 5-(22,9,490) (#1245)
      5-(23,8,168) 5-(22,8,140) (#1157)
      5-(22,7,28)

    • 4-(30,15,1590680) 4-(29,15,917700) 4-(28,15,513912) 4-(27,15,278369) 4-(26,15,145236) 4-(25,15,72618) 4-(24,15,34580) 4-(23,15,15561) 4-(22,15,6552) 4-(21,15,2548)
      4-(29,14,672980) 4-(28,14,403788) 4-(27,14,235543) 4-(26,14,133133) 4-(25,14,72618) 4-(24,14,38038) 4-(23,14,19019) 4-(22,14,9009) 4-(21,14,4004)
      4-(28,13,269192) 4-(27,13,168245) 4-(26,13,102410) 4-(25,13,60515) 4-(24,13,34580) 4-(23,13,19019) 4-(22,13,10010) 4-(21,13,5005)
      4-(27,12,100947) 4-(26,12,65835) 4-(25,12,41895) 4-(24,12,25935) 4-(23,12,15561) 4-(22,12,9009) 4-(21,12,5005)
      4-(26,11,35112) 4-(25,11,23940) 4-(24,11,15960) 4-(23,11,10374) 4-(22,11,6552) 4-(21,11,4004)
      4-(25,10,11172) 4-(24,10,7980) 4-(23,10,5586) 4-(22,10,3822) 4-(21,10,2548)
      4-(24,9,3192) 4-(23,9,2394) 4-(22,9,1764) 4-(21,9,1274)
      4-(23,8,798) 4-(22,8,630) 4-(21,8,490)
      4-(22,7,168) 4-(21,7,140)
      4-(21,6,28) (#361)

  • family 4, lambda = 36 containing 41 designs:

    minpath=(0, 0, 0) minimal_t=4
  • family 5, lambda = 44 containing 38 designs:

    minpath=(0, 0, 0) minimal_t=5
  • family 6, lambda = 52 containing 31 designs:

    minpath=(0, 0, 0) minimal_t=4
    • 13-(30,15,52)

    • 12-(30,15,312) 12-(29,15,260)
      12-(29,14,52)

    • 11-(30,15,1482) 11-(29,15,1170) 11-(28,15,910)
      11-(29,14,312) 11-(28,14,260)
      11-(28,13,52)

    • 10-(30,15,5928) 10-(29,15,4446) 10-(28,15,3276) 10-(27,15,2366)
      10-(29,14,1482) 10-(28,14,1170) 10-(27,14,910)
      10-(28,13,312) 10-(27,13,260)
      10-(27,12,52)

    • 9-(30,15,20748) 9-(29,15,14820) 9-(28,15,10374) 9-(27,15,7098) 9-(26,15,4732)
      9-(29,14,5928) 9-(28,14,4446) 9-(27,14,3276) 9-(26,14,2366)
      9-(28,13,1482) 9-(27,13,1170) 9-(26,13,910)
      9-(27,12,312) 9-(26,12,260)
      9-(26,11,52)

    • 8-(30,15,65208) 8-(29,15,44460) 8-(28,15,29640) 8-(27,15,19266) 8-(26,15,12168) 8-(25,15,7436)
      8-(29,14,20748) 8-(28,14,14820) 8-(27,14,10374) 8-(26,14,7098) 8-(25,14,4732)
      8-(28,13,5928) 8-(27,13,4446) 8-(26,13,3276) 8-(25,13,2366)
      8-(27,12,1482) 8-(26,12,1170) 8-(25,12,910)
      8-(26,11,312) 8-(25,11,260)
      8-(25,10,52)

    • 7-(30,15,187473) 7-(29,15,122265) 7-(28,15,77805) 7-(27,15,48165) 7-(26,15,28899) 7-(25,15,16731) 7-(24,15,9295)
      7-(29,14,65208) 7-(28,14,44460) (#11289) 7-(27,14,29640) 7-(26,14,19266) 7-(25,14,12168) 7-(24,14,7436)
      7-(28,13,20748) 7-(27,13,14820) (#14900) 7-(26,13,10374) 7-(25,13,7098) 7-(24,13,4732)
      7-(27,12,5928) 7-(26,12,4446) 7-(25,12,3276) 7-(24,12,2366)
      7-(26,11,1482) 7-(25,11,1170) 7-(24,11,910)
      7-(25,10,312) 7-(24,10,260)
      7-(24,9,52)

    • 6-(30,15,499928) 6-(29,15,312455) 6-(28,15,190190) 6-(27,15,112385) 6-(26,15,64220) 6-(25,15,35321) 6-(24,15,18590) 6-(23,15,9295)
      6-(29,14,187473) 6-(28,14,122265) (#11288) 6-(27,14,77805) (#11296) 6-(26,14,48165) 6-(25,14,28899) 6-(24,14,16731) 6-(23,14,9295)
      6-(28,13,65208) 6-(27,13,44460) (#11284) 6-(26,13,29640) (#14902) 6-(25,13,19266) 6-(24,13,12168) 6-(23,13,7436)
      6-(27,12,20748) 6-(26,12,14820) (#14901) 6-(25,12,10374) 6-(24,12,7098) 6-(23,12,4732)
      6-(26,11,5928) 6-(25,11,4446) 6-(24,11,3276) 6-(23,11,2366)
      6-(25,10,1482) 6-(24,10,1170) 6-(23,10,910)
      6-(24,9,312) 6-(23,9,260)
      6-(23,8,52)

    • 5-(30,15,1249820) (#14915) 5-(29,15,749892) 5-(28,15,437437) 5-(27,15,247247) 5-(26,15,134862) 5-(25,15,70642) 5-(24,15,35321) 5-(23,15,16731) 5-(22,15,7436)
      5-(29,14,499928) (#14914) 5-(28,14,312455) (#7706) 5-(27,14,190190) (#11293) 5-(26,14,112385) (#11300) 5-(25,14,64220) 5-(24,14,35321) 5-(23,14,18590) 5-(22,14,9295)
      5-(28,13,187473) (#14913) 5-(27,13,122265) (#11285) 5-(26,13,77805) (#11287) 5-(25,13,48165) (#14909) 5-(24,13,28899) 5-(23,13,16731) 5-(22,13,9295)
      5-(27,12,65208) (#14912) 5-(26,12,44460) (#11286) 5-(25,12,29640) (#14906) 5-(24,12,19266) (#3373) 5-(23,12,12168) 5-(22,12,7436)
      5-(26,11,20748) (#14911) 5-(25,11,14820) (#14905) 5-(24,11,10374) 5-(23,11,7098) 5-(22,11,4732) (#224)
      5-(25,10,5928) (#6593) 5-(24,10,4446) (#1270) 5-(23,10,3276) (#1269) 5-(22,10,2366)
      5-(24,9,1482) (#6592) 5-(23,9,1170) (#1260) 5-(22,9,910) (#1259)
      5-(23,8,312) 5-(22,8,260) (#1165)
      5-(22,7,52)

    • 4-(30,15,2954120) 4-(29,15,1704300) 4-(28,15,954408) 4-(27,15,516971) 4-(26,15,269724) 4-(25,15,134862) 4-(24,15,64220) 4-(23,15,28899) 4-(22,15,12168) 4-(21,15,4732)
      4-(29,14,1249820) 4-(28,14,749892) 4-(27,14,437437) 4-(26,14,247247) 4-(25,14,134862) 4-(24,14,70642) 4-(23,14,35321) 4-(22,14,16731) 4-(21,14,7436)
      4-(28,13,499928) 4-(27,13,312455) 4-(26,13,190190) 4-(25,13,112385) 4-(24,13,64220) 4-(23,13,35321) 4-(22,13,18590) 4-(21,13,9295)
      4-(27,12,187473) 4-(26,12,122265) 4-(25,12,77805) 4-(24,12,48165) 4-(23,12,28899) 4-(22,12,16731) 4-(21,12,9295)
      4-(26,11,65208) 4-(25,11,44460) 4-(24,11,29640) 4-(23,11,19266) 4-(22,11,12168) 4-(21,11,7436)
      4-(25,10,20748) 4-(24,10,14820) 4-(23,10,10374) 4-(22,10,7098) 4-(21,10,4732) (#223)
      4-(24,9,5928) 4-(23,9,4446) 4-(22,9,3276) 4-(21,9,2366)
      4-(23,8,1482) 4-(22,8,1170) 4-(21,8,910)
      4-(22,7,312) 4-(21,7,260)
      4-(21,6,52)

  • family 7, lambda = 60 containing 41 designs:

    minpath=(0, 0, 0) minimal_t=4


created: Fri Oct 23 11:21:10 CEST 2009

University of Bayreuth -