design clan: 7_24_12
7-(24,12,m*14), 1 <= m <= 221; (172/851) lambda_max=6188, lambda_max_half=3094
the clan contains 172 families:
- family 0, lambda = 14 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 1, lambda = 28 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 2, lambda = 126 containing 2 designs:
minpath=(0, 1, 1) minimal_t=4-
5-(22,11,252) (#122)
-
4-(22,11,648) 4-(21,11,396)
4-(21,10,252) (#121)
-
5-(22,11,252) (#122)
- family 3, lambda = 140 containing 2 designs:
minpath=(0, 1, 1) minimal_t=4-
5-(22,11,280) (#136)
-
4-(22,11,720) 4-(21,11,440)
4-(21,10,280) (#135)
-
5-(22,11,280) (#136)
- family 4, lambda = 154 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 5, lambda = 168 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,168)
-
6-(24,12,504) 6-(23,12,336)
6-(23,11,168)
-
5-(24,12,1368) (#2351) 5-(23,12,864) 5-(22,12,528)
5-(23,11,504) 5-(22,11,336) (#160)
5-(22,10,168)
-
4-(24,12,3420) 4-(23,12,2052) 4-(22,12,1188) 4-(21,12,660)
4-(23,11,1368) 4-(22,11,864) 4-(21,11,528)
4-(22,10,504) 4-(21,10,336) (#159)
4-(21,9,168)
-
7-(24,12,168)
- family 6, lambda = 224 containing 2 designs:
minpath=(0, 1, 1) minimal_t=4-
5-(22,11,448) (#210)
-
4-(22,11,1152) 4-(21,11,704)
4-(21,10,448) (#209)
-
5-(22,11,448) (#210)
- family 7, lambda = 252 containing 6 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,252)
-
6-(24,12,756) 6-(23,12,504)
6-(23,11,252)
-
5-(24,12,2052) (#1045) 5-(23,12,1296) (#1046) 5-(22,12,792)
5-(23,11,756) (#1044) 5-(22,11,504) (#236)
5-(22,10,252) (#1043)
-
4-(24,12,5130) 4-(23,12,3078) 4-(22,12,1782) 4-(21,12,990)
4-(23,11,2052) 4-(22,11,1296) 4-(21,11,792)
4-(22,10,756) 4-(21,10,504) (#235)
4-(21,9,252)
-
7-(24,12,252)
- family 8, lambda = 266 containing 2 designs:
minpath=(0, 1, 1) minimal_t=4-
5-(22,11,532) (#250)
-
4-(22,11,1368) 4-(21,11,836)
4-(21,10,532) (#249)
-
5-(22,11,532) (#250)
- family 9, lambda = 308 containing 6 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,308)
-
6-(24,12,924) 6-(23,12,616)
6-(23,11,308)
-
5-(24,12,2508) (#1067) 5-(23,12,1584) (#1068) 5-(22,12,968)
5-(23,11,924) (#1066) 5-(22,11,616) (#298)
5-(22,10,308) (#1065)
-
4-(24,12,6270) 4-(23,12,3762) 4-(22,12,2178) 4-(21,12,1210)
4-(23,11,2508) 4-(22,11,1584) 4-(21,11,968)
4-(22,10,924) 4-(21,10,616) (#297)
4-(21,9,308)
-
7-(24,12,308)
- family 10, lambda = 322 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 11, lambda = 336 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,336)
-
6-(24,12,1008) 6-(23,12,672)
6-(23,11,336)
-
5-(24,12,2736) (#4416) 5-(23,12,1728) 5-(22,12,1056)
5-(23,11,1008) 5-(22,11,672) (#330)
5-(22,10,336)
-
4-(24,12,6840) 4-(23,12,4104) 4-(22,12,2376) 4-(21,12,1320)
4-(23,11,2736) 4-(22,11,1728) 4-(21,11,1056)
4-(22,10,1008) 4-(21,10,672) (#329)
4-(21,9,336)
-
7-(24,12,336)
- family 12, lambda = 350 containing 2 designs:
minpath=(0, 1, 1) minimal_t=4-
5-(22,11,700) (#338)
-
4-(22,11,1800) 4-(21,11,1100)
4-(21,10,700) (#337)
-
5-(22,11,700) (#338)
- family 13, lambda = 378 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,378)
-
6-(24,12,1134) 6-(23,12,756)
6-(23,11,378)
-
5-(24,12,3078) (#1074) 5-(23,12,1944) 5-(22,12,1188)
5-(23,11,1134) (#1073) 5-(22,11,756) (#340)
5-(22,10,378) (#1072)
-
4-(24,12,7695) 4-(23,12,4617) 4-(22,12,2673) 4-(21,12,1485)
4-(23,11,3078) 4-(22,11,1944) 4-(21,11,1188)
4-(22,10,1134) 4-(21,10,756) (#339)
4-(21,9,378)
-
7-(24,12,378)
- family 14, lambda = 392 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,392)
-
6-(24,12,1176) 6-(23,12,784)
6-(23,11,392)
-
5-(24,12,3192) (#1077) 5-(23,12,2016) 5-(22,12,1232)
5-(23,11,1176) (#1076) 5-(22,11,784) (#342)
5-(22,10,392) (#1075)
-
4-(24,12,7980) 4-(23,12,4788) 4-(22,12,2772) 4-(21,12,1540)
4-(23,11,3192) 4-(22,11,2016) 4-(21,11,1232)
4-(22,10,1176) 4-(21,10,784) (#341)
4-(21,9,392)
-
7-(24,12,392)
- family 15, lambda = 420 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,420)
-
6-(24,12,1260) 6-(23,12,840)
6-(23,11,420)
-
5-(24,12,3420) (#1080) 5-(23,12,2160) 5-(22,12,1320)
5-(23,11,1260) (#1079) 5-(22,11,840) (#344)
5-(22,10,420) (#1078)
-
4-(24,12,8550) 4-(23,12,5130) 4-(22,12,2970) 4-(21,12,1650)
4-(23,11,3420) 4-(22,11,2160) 4-(21,11,1320)
4-(22,10,1260) 4-(21,10,840) (#343)
4-(21,9,420)
-
7-(24,12,420)
- family 16, lambda = 462 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,462)
-
6-(24,12,1386) 6-(23,12,924)
6-(23,11,462)
-
5-(24,12,3762) (#1083) 5-(23,12,2376) 5-(22,12,1452)
5-(23,11,1386) (#1082) 5-(22,11,924) (#346)
5-(22,10,462) (#1081)
-
4-(24,12,9405) 4-(23,12,5643) 4-(22,12,3267) 4-(21,12,1815)
4-(23,11,3762) 4-(22,11,2376) 4-(21,11,1452)
4-(22,10,1386) 4-(21,10,924) (#345)
4-(21,9,462)
-
7-(24,12,462)
- family 17, lambda = 490 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 18, lambda = 504 containing 1 designs:
minpath=(0, 1, 1) minimal_t=5 - family 19, lambda = 518 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,518)
-
6-(24,12,1554) 6-(23,12,1036)
6-(23,11,518)
-
5-(24,12,4218) (#1086) 5-(23,12,2664) 5-(22,12,1628)
5-(23,11,1554) (#1085) 5-(22,11,1036) (#62)
5-(22,10,518) (#1084)
-
4-(24,12,10545) 4-(23,12,6327) 4-(22,12,3663) 4-(21,12,2035)
4-(23,11,4218) 4-(22,11,2664) 4-(21,11,1628)
4-(22,10,1554) 4-(21,10,1036) (#61)
4-(21,9,518)
-
7-(24,12,518)
- family 20, lambda = 560 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,560)
-
6-(24,12,1680) 6-(23,12,1120)
6-(23,11,560)
-
5-(24,12,4560) (#1092) 5-(23,12,2880) 5-(22,12,1760)
5-(23,11,1680) (#1091) 5-(22,11,1120) (#66)
5-(22,10,560) (#1090)
-
4-(24,12,11400) 4-(23,12,6840) 4-(22,12,3960) 4-(21,12,2200)
4-(23,11,4560) 4-(22,11,2880) 4-(21,11,1760)
4-(22,10,1680) 4-(21,10,1120) (#65)
4-(21,9,560)
-
7-(24,12,560)
- family 21, lambda = 588 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,588)
-
6-(24,12,1764) 6-(23,12,1176)
6-(23,11,588)
-
5-(24,12,4788) (#1095) 5-(23,12,3024) 5-(22,12,1848)
5-(23,11,1764) (#1094) 5-(22,11,1176) (#68)
5-(22,10,588) (#1093)
-
4-(24,12,11970) 4-(23,12,7182) 4-(22,12,4158) 4-(21,12,2310)
4-(23,11,4788) 4-(22,11,3024) 4-(21,11,1848)
4-(22,10,1764) 4-(21,10,1176) (#67)
4-(21,9,588)
-
7-(24,12,588)
- family 22, lambda = 602 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,602)
-
6-(24,12,1806) 6-(23,12,1204)
6-(23,11,602)
-
5-(24,12,4902) (#1098) 5-(23,12,3096) 5-(22,12,1892)
5-(23,11,1806) (#1097) 5-(22,11,1204) (#70)
5-(22,10,602) (#1096)
-
4-(24,12,12255) 4-(23,12,7353) 4-(22,12,4257) 4-(21,12,2365)
4-(23,11,4902) 4-(22,11,3096) 4-(21,11,1892)
4-(22,10,1806) 4-(21,10,1204) (#69)
4-(21,9,602)
-
7-(24,12,602)
- family 23, lambda = 616 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(24,12,616)
-
6-(24,12,1848) 6-(23,12,1232)
6-(23,11,616)
-
5-(24,12,5016) (#4555) 5-(23,12,3168) 5-(22,12,1936)
5-(23,11,1848) 5-(22,11,1232)
5-(22,10,616) (#1099)
-
7-(24,12,616)
- family 24, lambda = 630 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,630)
-
6-(24,12,1890) 6-(23,12,1260)
6-(23,11,630)
-
5-(24,12,5130) (#1102) 5-(23,12,3240) 5-(22,12,1980)
5-(23,11,1890) (#1101) 5-(22,11,1260) (#72)
5-(22,10,630) (#1100)
-
4-(24,12,12825) 4-(23,12,7695) 4-(22,12,4455) 4-(21,12,2475)
4-(23,11,5130) 4-(22,11,3240) 4-(21,11,1980)
4-(22,10,1890) 4-(21,10,1260) (#71)
4-(21,9,630)
-
7-(24,12,630)
- family 25, lambda = 644 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(24,12,644)
-
6-(24,12,1932) 6-(23,12,1288)
6-(23,11,644)
-
5-(24,12,5244) (#4570) 5-(23,12,3312) 5-(22,12,2024)
5-(23,11,1932) 5-(22,11,1288) (#1143)
5-(22,10,644)
-
7-(24,12,644)
- family 26, lambda = 672 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,672)
-
6-(24,12,2016) 6-(23,12,1344)
6-(23,11,672)
-
5-(24,12,5472) (#1105) 5-(23,12,3456) 5-(22,12,2112)
5-(23,11,2016) (#1104) 5-(22,11,1344) (#74)
5-(22,10,672) (#1103)
-
4-(24,12,13680) 4-(23,12,8208) 4-(22,12,4752) 4-(21,12,2640)
4-(23,11,5472) 4-(22,11,3456) 4-(21,11,2112)
4-(22,10,2016) 4-(21,10,1344) (#73)
4-(21,9,672)
-
7-(24,12,672)
- family 27, lambda = 686 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,686)
-
6-(24,12,2058) 6-(23,12,1372)
6-(23,11,686)
-
5-(24,12,5586) (#1108) 5-(23,12,3528) 5-(22,12,2156)
5-(23,11,2058) (#1107) 5-(22,11,1372) (#76)
5-(22,10,686) (#1106)
-
4-(24,12,13965) 4-(23,12,8379) 4-(22,12,4851) 4-(21,12,2695)
4-(23,11,5586) 4-(22,11,3528) 4-(21,11,2156)
4-(22,10,2058) 4-(21,10,1372) (#75)
4-(21,9,686)
-
7-(24,12,686)
- family 28, lambda = 756 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,756)
-
6-(24,12,2268) 6-(23,12,1512)
6-(23,11,756)
-
5-(24,12,6156) (#1114) 5-(23,12,3888) 5-(22,12,2376)
5-(23,11,2268) (#1113) 5-(22,11,1512) (#80)
5-(22,10,756) (#1112)
-
4-(24,12,15390) 4-(23,12,9234) 4-(22,12,5346) 4-(21,12,2970)
4-(23,11,6156) 4-(22,11,3888) 4-(21,11,2376)
4-(22,10,2268) 4-(21,10,1512) (#79)
4-(21,9,756)
-
7-(24,12,756)
- family 29, lambda = 770 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,770) (#9723)
-
6-(24,12,2310) (#9722) 6-(23,12,1540) (#9724)
6-(23,11,770) (#9721)
-
5-(24,12,6270) (#1117) 5-(23,12,3960) (#9728) 5-(22,12,2420) (#9734)
5-(23,11,2310) (#1116) 5-(22,11,1540) (#82)
5-(22,10,770) (#1115)
-
4-(24,12,15675) 4-(23,12,9405) 4-(22,12,5445) 4-(21,12,3025)
4-(23,11,6270) 4-(22,11,3960) 4-(21,11,2420)
4-(22,10,2310) 4-(21,10,1540) (#81)
4-(21,9,770)
-
7-(24,12,770) (#9723)
- family 30, lambda = 784 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 31, lambda = 798 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,798)
-
6-(24,12,2394) 6-(23,12,1596)
6-(23,11,798)
-
5-(24,12,6498) (#1120) 5-(23,12,4104) 5-(22,12,2508)
5-(23,11,2394) (#1119) 5-(22,11,1596) (#84)
5-(22,10,798) (#1118)
-
4-(24,12,16245) 4-(23,12,9747) 4-(22,12,5643) 4-(21,12,3135)
4-(23,11,6498) 4-(22,11,4104) 4-(21,11,2508)
4-(22,10,2394) 4-(21,10,1596) (#83)
4-(21,9,798)
-
7-(24,12,798)
- family 32, lambda = 812 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,812)
-
6-(24,12,2436) 6-(23,12,1624)
6-(23,11,812)
-
5-(24,12,6612) (#1123) 5-(23,12,4176) 5-(22,12,2552)
5-(23,11,2436) (#1122) 5-(22,11,1624) (#86)
5-(22,10,812) (#1121)
-
4-(24,12,16530) 4-(23,12,9918) 4-(22,12,5742) 4-(21,12,3190)
4-(23,11,6612) 4-(22,11,4176) 4-(21,11,2552)
4-(22,10,2436) 4-(21,10,1624) (#85)
4-(21,9,812)
-
7-(24,12,812)
- family 33, lambda = 840 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,840)
-
6-(24,12,2520) 6-(23,12,1680)
6-(23,11,840)
-
5-(24,12,6840) (#1126) 5-(23,12,4320) 5-(22,12,2640)
5-(23,11,2520) (#1125) 5-(22,11,1680) (#88)
5-(22,10,840) (#1124)
-
4-(24,12,17100) 4-(23,12,10260) 4-(22,12,5940) 4-(21,12,3300)
4-(23,11,6840) 4-(22,11,4320) 4-(21,11,2640)
4-(22,10,2520) 4-(21,10,1680) (#87)
4-(21,9,840)
-
7-(24,12,840)
- family 34, lambda = 868 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 35, lambda = 882 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,882) (#9739)
-
6-(24,12,2646) (#9738) 6-(23,12,1764) (#9740)
6-(23,11,882) (#9737)
-
5-(24,12,7182) (#1129) 5-(23,12,4536) (#9744) 5-(22,12,2772) (#9750)
5-(23,11,2646) (#1128) 5-(22,11,1764) (#90)
5-(22,10,882) (#1127)
-
4-(24,12,17955) 4-(23,12,10773) 4-(22,12,6237) 4-(21,12,3465)
4-(23,11,7182) 4-(22,11,4536) 4-(21,11,2772)
4-(22,10,2646) 4-(21,10,1764) (#89)
4-(21,9,882)
-
7-(24,12,882) (#9739)
- family 36, lambda = 896 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,896) (#9755)
-
6-(24,12,2688) (#9754) 6-(23,12,1792) (#9756)
6-(23,11,896) (#9753)
-
5-(24,12,7296) (#1132) 5-(23,12,4608) (#9760) 5-(22,12,2816) (#9766)
5-(23,11,2688) (#1131) 5-(22,11,1792) (#92)
5-(22,10,896) (#1130)
-
4-(24,12,18240) 4-(23,12,10944) 4-(22,12,6336) 4-(21,12,3520)
4-(23,11,7296) 4-(22,11,4608) 4-(21,11,2816)
4-(22,10,2688) 4-(21,10,1792) (#91)
4-(21,9,896)
-
7-(24,12,896) (#9755)
- family 37, lambda = 924 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(24,12,924)
-
6-(24,12,2772) 6-(23,12,1848)
6-(23,11,924)
-
5-(24,12,7524) (#4766) 5-(23,12,4752) 5-(22,12,2904)
5-(23,11,2772) 5-(22,11,1848) (#1144)
5-(22,10,924)
-
7-(24,12,924)
- family 38, lambda = 938 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,938) (#9771)
-
6-(24,12,2814) (#9770) 6-(23,12,1876) (#9772)
6-(23,11,938) (#9769)
-
5-(24,12,7638) (#1135) 5-(23,12,4824) (#9776) 5-(22,12,2948) (#9782)
5-(23,11,2814) (#1134) 5-(22,11,1876) (#94)
5-(22,10,938) (#1133)
-
4-(24,12,19095) 4-(23,12,11457) 4-(22,12,6633) 4-(21,12,3685)
4-(23,11,7638) 4-(22,11,4824) 4-(21,11,2948)
4-(22,10,2814) 4-(21,10,1876) (#93)
4-(21,9,938)
-
7-(24,12,938) (#9771)
- family 39, lambda = 966 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,966)
-
6-(24,12,2898) 6-(23,12,1932)
6-(23,11,966)
-
5-(24,12,7866) (#1138) 5-(23,12,4968) 5-(22,12,3036)
5-(23,11,2898) (#1137) 5-(22,11,1932) (#96)
5-(22,10,966) (#1136)
-
4-(24,12,19665) 4-(23,12,11799) 4-(22,12,6831) 4-(21,12,3795)
4-(23,11,7866) 4-(22,11,4968) 4-(21,11,3036)
4-(22,10,2898) 4-(21,10,1932) (#95)
4-(21,9,966)
-
7-(24,12,966)
- family 40, lambda = 980 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,980)
-
6-(24,12,2940) 6-(23,12,1960)
6-(23,11,980)
-
5-(24,12,7980) (#1141) 5-(23,12,5040) 5-(22,12,3080)
5-(23,11,2940) (#1140) 5-(22,11,1960) (#98)
5-(22,10,980) (#1139)
-
4-(24,12,19950) 4-(23,12,11970) 4-(22,12,6930) 4-(21,12,3850)
4-(23,11,7980) 4-(22,11,5040) 4-(21,11,3080)
4-(22,10,2940) 4-(21,10,1960) (#97)
4-(21,9,980)
-
7-(24,12,980)
- family 41, lambda = 994 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 42, lambda = 1008 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1008) (#8823)
-
6-(24,12,3024) (#8822) 6-(23,12,2016) (#8824)
6-(23,11,1008) (#8821)
-
5-(24,12,8208) (#975) 5-(23,12,5184) (#8828) 5-(22,12,3168) (#8834)
5-(23,11,3024) (#974) 5-(22,11,2016) (#100)
5-(22,10,1008) (#973)
-
4-(24,12,20520) 4-(23,12,12312) 4-(22,12,7128) 4-(21,12,3960)
4-(23,11,8208) 4-(22,11,5184) 4-(21,11,3168)
4-(22,10,3024) 4-(21,10,2016) (#99)
4-(21,9,1008)
-
7-(24,12,1008) (#8823)
- family 43, lambda = 1022 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1022) (#8839)
-
6-(24,12,3066) (#8838) 6-(23,12,2044) (#8840)
6-(23,11,1022) (#8837)
-
5-(24,12,8322) (#978) 5-(23,12,5256) (#8844) 5-(22,12,3212) (#8850)
5-(23,11,3066) (#977) 5-(22,11,2044) (#102)
5-(22,10,1022) (#976)
-
4-(24,12,20805) 4-(23,12,12483) 4-(22,12,7227) 4-(21,12,4015)
4-(23,11,8322) 4-(22,11,5256) 4-(21,11,3212)
4-(22,10,3066) 4-(21,10,2044) (#101)
4-(21,9,1022)
-
7-(24,12,1022) (#8839)
- family 44, lambda = 1036 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 45, lambda = 1050 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1050)
-
6-(24,12,3150) 6-(23,12,2100)
6-(23,11,1050)
-
5-(24,12,8550) (#981) 5-(23,12,5400) 5-(22,12,3300)
5-(23,11,3150) (#980) 5-(22,11,2100) (#104)
5-(22,10,1050) (#979)
-
4-(24,12,21375) 4-(23,12,12825) 4-(22,12,7425) 4-(21,12,4125)
4-(23,11,8550) 4-(22,11,5400) 4-(21,11,3300)
4-(22,10,3150) 4-(21,10,2100) (#103)
4-(21,9,1050)
-
7-(24,12,1050)
- family 46, lambda = 1064 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1064)
-
6-(24,12,3192) 6-(23,12,2128)
6-(23,11,1064)
-
5-(24,12,8664) (#4975) 5-(23,12,5472) 5-(22,12,3344)
5-(23,11,3192) 5-(22,11,2128) (#106)
5-(22,10,1064)
-
4-(24,12,21660) 4-(23,12,12996) 4-(22,12,7524) 4-(21,12,4180)
4-(23,11,8664) 4-(22,11,5472) 4-(21,11,3344)
4-(22,10,3192) 4-(21,10,2128) (#105)
4-(21,9,1064)
-
7-(24,12,1064)
- family 47, lambda = 1078 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 48, lambda = 1106 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1106)
-
6-(24,12,3318) 6-(23,12,2212)
6-(23,11,1106)
-
5-(24,12,9006) (#5032) 5-(23,12,5688) 5-(22,12,3476)
5-(23,11,3318) 5-(22,11,2212) (#110)
5-(22,10,1106)
-
4-(24,12,22515) 4-(23,12,13509) 4-(22,12,7821) 4-(21,12,4345)
4-(23,11,9006) 4-(22,11,5688) 4-(21,11,3476)
4-(22,10,3318) 4-(21,10,2212) (#109)
4-(21,9,1106)
-
7-(24,12,1106)
- family 49, lambda = 1120 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 50, lambda = 1134 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 51, lambda = 1148 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1148) (#8886)
-
6-(24,12,3444) (#8885) 6-(23,12,2296) (#8893)
6-(23,11,1148) (#8884)
-
5-(24,12,9348) (#987) 5-(23,12,5904) (#8890) 5-(22,12,3608) (#8897)
5-(23,11,3444) (#986) 5-(22,11,2296) (#112)
5-(22,10,1148) (#985)
-
4-(24,12,23370) 4-(23,12,14022) 4-(22,12,8118) 4-(21,12,4510)
4-(23,11,9348) 4-(22,11,5904) 4-(21,11,3608)
4-(22,10,3444) 4-(21,10,2296) (#111)
4-(21,9,1148)
-
7-(24,12,1148) (#8886)
- family 52, lambda = 1162 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 53, lambda = 1176 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1176)
-
6-(24,12,3528) 6-(23,12,2352)
6-(23,11,1176)
-
5-(24,12,9576) (#990) 5-(23,12,6048) 5-(22,12,3696)
5-(23,11,3528) (#989) 5-(22,11,2352) (#114)
5-(22,10,1176) (#988)
-
4-(24,12,23940) 4-(23,12,14364) 4-(22,12,8316) 4-(21,12,4620)
4-(23,11,9576) 4-(22,11,6048) 4-(21,11,3696)
4-(22,10,3528) 4-(21,10,2352) (#113)
4-(21,9,1176)
-
7-(24,12,1176)
- family 54, lambda = 1204 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 55, lambda = 1218 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1218) (#8904)
-
6-(24,12,3654) (#8903) 6-(23,12,2436) (#8911)
6-(23,11,1218) (#8900)
-
5-(24,12,9918) (#5198) 5-(23,12,6264) (#8908) 5-(22,12,3828) (#8915)
5-(23,11,3654) (#8901) 5-(22,11,2436) (#118)
5-(22,10,1218) (#8902)
-
4-(24,12,24795) 4-(23,12,14877) 4-(22,12,8613) 4-(21,12,4785)
4-(23,11,9918) 4-(22,11,6264) 4-(21,11,3828)
4-(22,10,3654) 4-(21,10,2436) (#117)
4-(21,9,1218)
-
7-(24,12,1218) (#8904)
- family 56, lambda = 1232 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1232)
-
6-(24,12,3696) 6-(23,12,2464)
6-(23,11,1232)
-
5-(24,12,10032) (#993) 5-(23,12,6336) 5-(22,12,3872)
5-(23,11,3696) (#992) 5-(22,11,2464) (#120)
5-(22,10,1232) (#991)
-
4-(24,12,25080) 4-(23,12,15048) 4-(22,12,8712) 4-(21,12,4840)
4-(23,11,10032) 4-(22,11,6336) 4-(21,11,3872)
4-(22,10,3696) 4-(21,10,2464) (#119)
4-(21,9,1232)
-
7-(24,12,1232)
- family 57, lambda = 1246 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 58, lambda = 1260 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1260) (#8920)
-
6-(24,12,3780) (#8919) 6-(23,12,2520) (#8927)
6-(23,11,1260) (#8918)
-
5-(24,12,10260) (#996) 5-(23,12,6480) (#8924) 5-(22,12,3960) (#8931)
5-(23,11,3780) (#995) 5-(22,11,2520) (#124)
5-(22,10,1260) (#994)
-
4-(24,12,25650) 4-(23,12,15390) 4-(22,12,8910) 4-(21,12,4950)
4-(23,11,10260) 4-(22,11,6480) 4-(21,11,3960)
4-(22,10,3780) 4-(21,10,2520) (#123)
4-(21,9,1260)
-
7-(24,12,1260) (#8920)
- family 59, lambda = 1288 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 60, lambda = 1302 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1302)
-
6-(24,12,3906) 6-(23,12,2604)
6-(23,11,1302)
-
5-(24,12,10602) (#999) 5-(23,12,6696) 5-(22,12,4092)
5-(23,11,3906) (#998) 5-(22,11,2604) (#126)
5-(22,10,1302) (#997)
-
4-(24,12,26505) 4-(23,12,15903) 4-(22,12,9207) 4-(21,12,5115)
4-(23,11,10602) 4-(22,11,6696) 4-(21,11,4092)
4-(22,10,3906) 4-(21,10,2604) (#125)
4-(21,9,1302)
-
7-(24,12,1302)
- family 61, lambda = 1316 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1316) (#8936)
-
6-(24,12,3948) (#8935) 6-(23,12,2632) (#8943)
6-(23,11,1316) (#8934)
-
5-(24,12,10716) (#1002) 5-(23,12,6768) (#8940) 5-(22,12,4136) (#8947)
5-(23,11,3948) (#1001) 5-(22,11,2632) (#128)
5-(22,10,1316) (#1000)
-
4-(24,12,26790) 4-(23,12,16074) 4-(22,12,9306) 4-(21,12,5170)
4-(23,11,10716) 4-(22,11,6768) 4-(21,11,4136)
4-(22,10,3948) 4-(21,10,2632) (#127)
4-(21,9,1316)
-
7-(24,12,1316) (#8936)
- family 62, lambda = 1330 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 63, lambda = 1344 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1344)
-
6-(24,12,4032) 6-(23,12,2688)
6-(23,11,1344)
-
5-(24,12,10944) (#1855) 5-(23,12,6912) 5-(22,12,4224)
5-(23,11,4032) 5-(22,11,2688) (#130)
5-(22,10,1344)
-
4-(24,12,27360) 4-(23,12,16416) 4-(22,12,9504) 4-(21,12,5280)
4-(23,11,10944) 4-(22,11,6912) 4-(21,11,4224)
4-(22,10,4032) 4-(21,10,2688) (#129)
4-(21,9,1344)
-
7-(24,12,1344)
- family 64, lambda = 1358 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1358)
-
6-(24,12,4074) 6-(23,12,2716)
6-(23,11,1358)
-
5-(24,12,11058) (#1875) 5-(23,12,6984) 5-(22,12,4268)
5-(23,11,4074) 5-(22,11,2716) (#132)
5-(22,10,1358)
-
4-(24,12,27645) 4-(23,12,16587) 4-(22,12,9603) 4-(21,12,5335)
4-(23,11,11058) 4-(22,11,6984) 4-(21,11,4268)
4-(22,10,4074) 4-(21,10,2716) (#131)
4-(21,9,1358)
-
7-(24,12,1358)
- family 65, lambda = 1372 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 66, lambda = 1386 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1386) (#8952)
-
6-(24,12,4158) (#8951) 6-(23,12,2772) (#8959)
6-(23,11,1386) (#8950)
-
5-(24,12,11286) (#1005) 5-(23,12,7128) (#8956) 5-(22,12,4356) (#8963)
5-(23,11,4158) (#1004) 5-(22,11,2772) (#134)
5-(22,10,1386) (#1003)
-
4-(24,12,28215) 4-(23,12,16929) 4-(22,12,9801) 4-(21,12,5445)
4-(23,11,11286) 4-(22,11,7128) 4-(21,11,4356)
4-(22,10,4158) 4-(21,10,2772) (#133)
4-(21,9,1386)
-
7-(24,12,1386) (#8952)
- family 67, lambda = 1400 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1400) (#8970)
-
6-(24,12,4200) (#8969) 6-(23,12,2800) (#8977)
6-(23,11,1400) (#8966)
-
5-(24,12,11400) (#1938) 5-(23,12,7200) (#8974) 5-(22,12,4400) (#8981)
5-(23,11,4200) (#8967) 5-(22,11,2800) (#138)
5-(22,10,1400) (#8968)
-
4-(24,12,28500) 4-(23,12,17100) 4-(22,12,9900) 4-(21,12,5500)
4-(23,11,11400) 4-(22,11,7200) 4-(21,11,4400)
4-(22,10,4200) 4-(21,10,2800) (#137)
4-(21,9,1400)
-
7-(24,12,1400) (#8970)
- family 68, lambda = 1414 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 69, lambda = 1442 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1442) (#8988)
-
6-(24,12,4326) (#8987) 6-(23,12,2884) (#8995)
6-(23,11,1442) (#8984)
-
5-(24,12,11742) (#1996) 5-(23,12,7416) (#8992) 5-(22,12,4532) (#8999)
5-(23,11,4326) (#8985) 5-(22,11,2884) (#142)
5-(22,10,1442) (#8986)
-
4-(24,12,29355) 4-(23,12,17613) 4-(22,12,10197) 4-(21,12,5665)
4-(23,11,11742) 4-(22,11,7416) 4-(21,11,4532)
4-(22,10,4326) 4-(21,10,2884) (#141)
4-(21,9,1442)
-
7-(24,12,1442) (#8988)
- family 70, lambda = 1470 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1470) (#9006)
-
6-(24,12,4410) (#9005) 6-(23,12,2940) (#9013)
6-(23,11,1470) (#9002)
-
5-(24,12,11970) (#2040) 5-(23,12,7560) (#9010) 5-(22,12,4620) (#9017)
5-(23,11,4410) (#9003) 5-(22,11,2940) (#144)
5-(22,10,1470) (#9004)
-
4-(24,12,29925) 4-(23,12,17955) 4-(22,12,10395) 4-(21,12,5775)
4-(23,11,11970) 4-(22,11,7560) 4-(21,11,4620)
4-(22,10,4410) 4-(21,10,2940) (#143)
4-(21,9,1470)
-
7-(24,12,1470) (#9006)
- family 71, lambda = 1484 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 72, lambda = 1498 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 73, lambda = 1512 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1512) (#9022)
-
6-(24,12,4536) (#9021) 6-(23,12,3024) (#9029)
6-(23,11,1512) (#9020)
-
5-(24,12,12312) (#1008) 5-(23,12,7776) (#9026) 5-(22,12,4752) (#9033)
5-(23,11,4536) (#1007) 5-(22,11,3024) (#146)
5-(22,10,1512) (#1006)
-
4-(24,12,30780) 4-(23,12,18468) 4-(22,12,10692) 4-(21,12,5940)
4-(23,11,12312) 4-(22,11,7776) 4-(21,11,4752)
4-(22,10,4536) 4-(21,10,3024) (#145)
4-(21,9,1512)
-
7-(24,12,1512) (#9022)
- family 74, lambda = 1526 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1526) (#9040)
-
6-(24,12,4578) (#9039) 6-(23,12,3052) (#9047)
6-(23,11,1526) (#9036)
-
5-(24,12,12426) (#2122) 5-(23,12,7848) (#9044) 5-(22,12,4796) (#9051)
5-(23,11,4578) (#9037) 5-(22,11,3052) (#148)
5-(22,10,1526) (#9038)
-
4-(24,12,31065) 4-(23,12,18639) 4-(22,12,10791) 4-(21,12,5995)
4-(23,11,12426) 4-(22,11,7848) 4-(21,11,4796)
4-(22,10,4578) 4-(21,10,3052) (#147)
4-(21,9,1526)
-
7-(24,12,1526) (#9040)
- family 75, lambda = 1540 containing 2 designs:
minpath=(0, 0, 0) minimal_t=5-
7-(24,12,1540)
-
6-(24,12,4620) 6-(23,12,3080)
6-(23,11,1540)
-
5-(24,12,12540) (#2142) 5-(23,12,7920) 5-(22,12,4840)
5-(23,11,4620) 5-(22,11,3080)
5-(22,10,1540) (#1009)
-
7-(24,12,1540)
- family 76, lambda = 1554 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 77, lambda = 1568 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1568) (#9058)
-
6-(24,12,4704) (#9057) 6-(23,12,3136) (#9065)
6-(23,11,1568) (#9054)
-
5-(24,12,12768) (#2185) 5-(23,12,8064) (#9062) 5-(22,12,4928) (#9069)
5-(23,11,4704) (#9055) 5-(22,11,3136) (#150)
5-(22,10,1568) (#9056)
-
4-(24,12,31920) 4-(23,12,19152) 4-(22,12,11088) 4-(21,12,6160)
4-(23,11,12768) 4-(22,11,8064) 4-(21,11,4928)
4-(22,10,4704) 4-(21,10,3136) (#149)
4-(21,9,1568)
-
7-(24,12,1568) (#9058)
- family 78, lambda = 1582 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 79, lambda = 1596 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1596) (#9076)
-
6-(24,12,4788) (#9075) 6-(23,12,3192) (#9083)
6-(23,11,1596) (#9072)
-
5-(24,12,12996) (#2229) 5-(23,12,8208) (#9080) 5-(22,12,5016) (#9087)
5-(23,11,4788) (#9073) 5-(22,11,3192) (#152)
5-(22,10,1596) (#9074)
-
4-(24,12,32490) 4-(23,12,19494) 4-(22,12,11286) 4-(21,12,6270)
4-(23,11,12996) 4-(22,11,8208) 4-(21,11,5016)
4-(22,10,4788) 4-(21,10,3192) (#151)
4-(21,9,1596)
-
7-(24,12,1596) (#9076)
- family 80, lambda = 1610 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1610)
-
6-(24,12,4830) 6-(23,12,3220)
6-(23,11,1610)
-
5-(24,12,13110) (#2249) 5-(23,12,8280) 5-(22,12,5060)
5-(23,11,4830) 5-(22,11,3220) (#154)
5-(22,10,1610)
-
4-(24,12,32775) 4-(23,12,19665) 4-(22,12,11385) 4-(21,12,6325)
4-(23,11,13110) 4-(22,11,8280) 4-(21,11,5060)
4-(22,10,4830) 4-(21,10,3220) (#153)
4-(21,9,1610)
-
7-(24,12,1610)
- family 81, lambda = 1624 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 82, lambda = 1652 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1652) (#9125)
-
6-(24,12,4956) (#9124) 6-(23,12,3304) (#9132)
6-(23,11,1652) (#9121)
-
5-(24,12,13452) (#2307) 5-(23,12,8496) (#9129) 5-(22,12,5192) (#9136)
5-(23,11,4956) (#9122) 5-(22,11,3304) (#158)
5-(22,10,1652) (#9123)
-
4-(24,12,33630) 4-(23,12,20178) 4-(22,12,11682) 4-(21,12,6490)
4-(23,11,13452) 4-(22,11,8496) 4-(21,11,5192)
4-(22,10,4956) 4-(21,10,3304) (#157)
4-(21,9,1652)
-
7-(24,12,1652) (#9125)
- family 83, lambda = 1680 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1680)
-
6-(24,12,5040) 6-(23,12,3360)
6-(23,11,1680)
-
5-(24,12,13680) (#2352) 5-(23,12,8640) 5-(22,12,5280)
5-(23,11,5040) 5-(22,11,3360) (#162)
5-(22,10,1680)
-
4-(24,12,34200) 4-(23,12,20520) 4-(22,12,11880) 4-(21,12,6600)
4-(23,11,13680) 4-(22,11,8640) 4-(21,11,5280)
4-(22,10,5040) 4-(21,10,3360) (#161)
4-(21,9,1680)
-
7-(24,12,1680)
- family 84, lambda = 1694 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 85, lambda = 1708 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 86, lambda = 1722 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1722) (#9143)
-
6-(24,12,5166) (#9142) 6-(23,12,3444) (#9150)
6-(23,11,1722) (#9139)
-
5-(24,12,14022) (#2415) 5-(23,12,8856) (#9147) 5-(22,12,5412) (#9154)
5-(23,11,5166) (#9140) 5-(22,11,3444) (#164)
5-(22,10,1722) (#9141)
-
4-(24,12,35055) 4-(23,12,21033) 4-(22,12,12177) 4-(21,12,6765)
4-(23,11,14022) 4-(22,11,8856) 4-(21,11,5412)
4-(22,10,5166) 4-(21,10,3444) (#163)
4-(21,9,1722)
-
7-(24,12,1722) (#9143)
- family 87, lambda = 1736 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1736)
-
6-(24,12,5208) 6-(23,12,3472)
6-(23,11,1736)
-
5-(24,12,14136) (#1012) 5-(23,12,8928) 5-(22,12,5456)
5-(23,11,5208) (#1011) 5-(22,11,3472) (#166)
5-(22,10,1736) (#1010)
-
4-(24,12,35340) 4-(23,12,21204) 4-(22,12,12276) 4-(21,12,6820)
4-(23,11,14136) 4-(22,11,8928) 4-(21,11,5456)
4-(22,10,5208) 4-(21,10,3472) (#165)
4-(21,9,1736)
-
7-(24,12,1736)
- family 88, lambda = 1750 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 89, lambda = 1764 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1764)
-
6-(24,12,5292) 6-(23,12,3528)
6-(23,11,1764)
-
5-(24,12,14364) (#2478) 5-(23,12,9072) 5-(22,12,5544)
5-(23,11,5292) 5-(22,11,3528) (#168)
5-(22,10,1764)
-
4-(24,12,35910) 4-(23,12,21546) 4-(22,12,12474) 4-(21,12,6930)
4-(23,11,14364) 4-(22,11,9072) 4-(21,11,5544)
4-(22,10,5292) 4-(21,10,3528) (#167)
4-(21,9,1764)
-
7-(24,12,1764)
- family 90, lambda = 1778 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1778) (#9161)
-
6-(24,12,5334) (#9160) 6-(23,12,3556) (#9168)
6-(23,11,1778) (#9157)
-
5-(24,12,14478) (#2497) 5-(23,12,9144) (#9165) 5-(22,12,5588) (#9172)
5-(23,11,5334) (#9158) 5-(22,11,3556) (#170)
5-(22,10,1778) (#9159)
-
4-(24,12,36195) 4-(23,12,21717) 4-(22,12,12573) 4-(21,12,6985)
4-(23,11,14478) 4-(22,11,9144) 4-(21,11,5588)
4-(22,10,5334) 4-(21,10,3556) (#169)
4-(21,9,1778)
-
7-(24,12,1778) (#9161)
- family 91, lambda = 1792 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 92, lambda = 1806 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1806)
-
6-(24,12,5418) 6-(23,12,3612)
6-(23,11,1806)
-
5-(24,12,14706) (#1015) 5-(23,12,9288) 5-(22,12,5676)
5-(23,11,5418) (#1014) 5-(22,11,3612) (#172)
5-(22,10,1806) (#1013)
-
4-(24,12,36765) 4-(23,12,22059) 4-(22,12,12771) 4-(21,12,7095)
4-(23,11,14706) 4-(22,11,9288) 4-(21,11,5676)
4-(22,10,5418) 4-(21,10,3612) (#171)
4-(21,9,1806)
-
7-(24,12,1806)
- family 93, lambda = 1834 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 94, lambda = 1848 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1848) (#9210)
-
6-(24,12,5544) (#9209) 6-(23,12,3696) (#9217)
6-(23,11,1848) (#9206)
-
5-(24,12,15048) (#2606) 5-(23,12,9504) (#9214) 5-(22,12,5808) (#9221)
5-(23,11,5544) (#9207) 5-(22,11,3696) (#178)
5-(22,10,1848) (#9208)
-
4-(24,12,37620) 4-(23,12,22572) 4-(22,12,13068) 4-(21,12,7260)
4-(23,11,15048) 4-(22,11,9504) 4-(21,11,5808)
4-(22,10,5544) 4-(21,10,3696) (#177)
4-(21,9,1848)
-
7-(24,12,1848) (#9210)
- family 95, lambda = 1862 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1862)
-
6-(24,12,5586) 6-(23,12,3724)
6-(23,11,1862)
-
5-(24,12,15162) (#2625) 5-(23,12,9576) 5-(22,12,5852)
5-(23,11,5586) 5-(22,11,3724) (#180)
5-(22,10,1862)
-
4-(24,12,37905) 4-(23,12,22743) 4-(22,12,13167) 4-(21,12,7315)
4-(23,11,15162) 4-(22,11,9576) 4-(21,11,5852)
4-(22,10,5586) 4-(21,10,3724) (#179)
4-(21,9,1862)
-
7-(24,12,1862)
- family 96, lambda = 1876 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 97, lambda = 1890 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1890) (#9226)
-
6-(24,12,5670) (#9225) 6-(23,12,3780) (#9233)
6-(23,11,1890) (#9224)
-
5-(24,12,15390) (#1018) 5-(23,12,9720) (#9230) 5-(22,12,5940) (#9237)
5-(23,11,5670) (#1017) 5-(22,11,3780) (#182)
5-(22,10,1890) (#1016)
-
4-(24,12,38475) 4-(23,12,23085) 4-(22,12,13365) 4-(21,12,7425)
4-(23,11,15390) 4-(22,11,9720) 4-(21,11,5940)
4-(22,10,5670) 4-(21,10,3780) (#181)
4-(21,9,1890)
-
7-(24,12,1890) (#9226)
- family 98, lambda = 1918 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 99, lambda = 1932 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1932)
-
6-(24,12,5796) 6-(23,12,3864)
6-(23,11,1932)
-
5-(24,12,15732) (#1021) 5-(23,12,9936) 5-(22,12,6072)
5-(23,11,5796) (#1020) 5-(22,11,3864) (#184)
5-(22,10,1932) (#1019)
-
4-(24,12,39330) 4-(23,12,23598) 4-(22,12,13662) 4-(21,12,7590)
4-(23,11,15732) 4-(22,11,9936) 4-(21,11,6072)
4-(22,10,5796) 4-(21,10,3864) (#183)
4-(21,9,1932)
-
7-(24,12,1932)
- family 100, lambda = 1946 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1946) (#9244)
-
6-(24,12,5838) (#9243) 6-(23,12,3892) (#9251)
6-(23,11,1946) (#9240)
-
5-(24,12,15846) (#2749) 5-(23,12,10008) (#9248) 5-(22,12,6116) (#9255)
5-(23,11,5838) (#9241) 5-(22,11,3892) (#186)
5-(22,10,1946) (#9242)
-
4-(24,12,39615) 4-(23,12,23769) 4-(22,12,13761) 4-(21,12,7645)
4-(23,11,15846) 4-(22,11,10008) 4-(21,11,6116)
4-(22,10,5838) 4-(21,10,3892) (#185)
4-(21,9,1946)
-
7-(24,12,1946) (#9244)
- family 101, lambda = 1960 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 102, lambda = 1974 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 103, lambda = 1988 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,1988)
-
6-(24,12,5964) 6-(23,12,3976)
6-(23,11,1988)
-
5-(24,12,16188) (#1024) 5-(23,12,10224) 5-(22,12,6248)
5-(23,11,5964) (#1023) 5-(22,11,3976) (#188)
5-(22,10,1988) (#1022)
-
4-(24,12,40470) 4-(23,12,24282) 4-(22,12,14058) 4-(21,12,7810)
4-(23,11,16188) 4-(22,11,10224) 4-(21,11,6248)
4-(22,10,5964) 4-(21,10,3976) (#187)
4-(21,9,1988)
-
7-(24,12,1988)
- family 104, lambda = 2016 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2016) (#9260)
-
6-(24,12,6048) (#9259) 6-(23,12,4032) (#9267)
6-(23,11,2016) (#9258)
-
5-(24,12,16416) (#1027) 5-(23,12,10368) (#9264) 5-(22,12,6336) (#9271)
5-(23,11,6048) (#1026) 5-(22,11,4032) (#190)
5-(22,10,2016) (#1025)
-
4-(24,12,41040) 4-(23,12,24624) 4-(22,12,14256) 4-(21,12,7920)
4-(23,11,16416) 4-(22,11,10368) 4-(21,11,6336)
4-(22,10,6048) 4-(21,10,4032) (#189)
4-(21,9,2016)
-
7-(24,12,2016) (#9260)
- family 105, lambda = 2030 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2030) (#9278)
-
6-(24,12,6090) (#9277) 6-(23,12,4060) (#9285)
6-(23,11,2030) (#9274)
-
5-(24,12,16530) (#2874) 5-(23,12,10440) (#9282) 5-(22,12,6380) (#9289)
5-(23,11,6090) (#9275) 5-(22,11,4060) (#192)
5-(22,10,2030) (#9276)
-
4-(24,12,41325) 4-(23,12,24795) 4-(22,12,14355) 4-(21,12,7975)
4-(23,11,16530) 4-(22,11,10440) 4-(21,11,6380)
4-(22,10,6090) 4-(21,10,4060) (#191)
4-(21,9,2030)
-
7-(24,12,2030) (#9278)
- family 106, lambda = 2044 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 107, lambda = 2058 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2058)
-
6-(24,12,6174) 6-(23,12,4116)
6-(23,11,2058)
-
5-(24,12,16758) (#2912) 5-(23,12,10584) 5-(22,12,6468)
5-(23,11,6174) 5-(22,11,4116) (#194)
5-(22,10,2058)
-
4-(24,12,41895) 4-(23,12,25137) 4-(22,12,14553) 4-(21,12,8085)
4-(23,11,16758) 4-(22,11,10584) 4-(21,11,6468)
4-(22,10,6174) 4-(21,10,4116) (#193)
4-(21,9,2058)
-
7-(24,12,2058)
- family 108, lambda = 2072 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2072) (#9294)
-
6-(24,12,6216) (#9293) 6-(23,12,4144) (#9301)
6-(23,11,2072) (#9292)
-
5-(24,12,16872) (#1030) 5-(23,12,10656) (#9298) 5-(22,12,6512) (#9305)
5-(23,11,6216) (#1029) 5-(22,11,4144) (#196)
5-(22,10,2072) (#1028)
-
4-(24,12,42180) 4-(23,12,25308) 4-(22,12,14652) 4-(21,12,8140)
4-(23,11,16872) 4-(22,11,10656) 4-(21,11,6512)
4-(22,10,6216) 4-(21,10,4144) (#195)
4-(21,9,2072)
-
7-(24,12,2072) (#9294)
- family 109, lambda = 2086 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 110, lambda = 2100 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2100) (#9310)
-
6-(24,12,6300) (#9309) 6-(23,12,4200) (#9317)
6-(23,11,2100) (#9308)
-
5-(24,12,17100) (#1033) 5-(23,12,10800) (#9314) 5-(22,12,6600) (#9321)
5-(23,11,6300) (#1032) 5-(22,11,4200) (#198)
5-(22,10,2100) (#1031)
-
4-(24,12,42750) 4-(23,12,25650) 4-(22,12,14850) 4-(21,12,8250)
4-(23,11,17100) 4-(22,11,10800) 4-(21,11,6600)
4-(22,10,6300) 4-(21,10,4200) (#197)
4-(21,9,2100)
-
7-(24,12,2100) (#9310)
- family 111, lambda = 2114 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 112, lambda = 2128 containing 10 designs:
minpath=(0, 0, 0) minimal_t=5 - family 113, lambda = 2156 containing 12 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2156) (#9360)
-
6-(24,12,6468) (#9359) 6-(23,12,4312) (#9367)
6-(23,11,2156) (#9358)
-
5-(24,12,17556) (#1036) 5-(23,12,11088) (#9364) 5-(22,12,6776) (#9371)
5-(23,11,6468) (#1035) 5-(22,11,4312) (#202)
5-(22,10,2156) (#1034)
-
4-(24,12,43890) 4-(23,12,26334) 4-(22,12,15246) 4-(21,12,8470)
4-(23,11,17556) 4-(22,11,11088) 4-(21,11,6776)
4-(22,10,6468) 4-(21,10,4312) (#201)
4-(21,9,2156) (#373)
-
7-(24,12,2156) (#9360)
- family 114, lambda = 2170 containing 4 designs:
minpath=(1, 0, 0) minimal_t=5 - family 115, lambda = 2198 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2198) (#9378)
-
6-(24,12,6594) (#9377) 6-(23,12,4396) (#9385)
6-(23,11,2198) (#9374)
-
5-(24,12,17898) (#3124) 5-(23,12,11304) (#9382) 5-(22,12,6908) (#9389)
5-(23,11,6594) (#9375) 5-(22,11,4396) (#206)
5-(22,10,2198) (#9376)
-
4-(24,12,44745) 4-(23,12,26847) 4-(22,12,15543) 4-(21,12,8635)
4-(23,11,17898) 4-(22,11,11304) 4-(21,11,6908)
4-(22,10,6594) 4-(21,10,4396) (#205)
4-(21,9,2198)
-
7-(24,12,2198) (#9378)
- family 116, lambda = 2212 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 117, lambda = 2226 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2226) (#9396)
-
6-(24,12,6678) (#9395) 6-(23,12,4452) (#9403)
6-(23,11,2226) (#9392)
-
5-(24,12,18126) (#3169) 5-(23,12,11448) (#9400) 5-(22,12,6996) (#9407)
5-(23,11,6678) (#9393) 5-(22,11,4452) (#208)
5-(22,10,2226) (#9394)
-
4-(24,12,45315) 4-(23,12,27189) 4-(22,12,15741) 4-(21,12,8745)
4-(23,11,18126) 4-(22,11,11448) 4-(21,11,6996)
4-(22,10,6678) 4-(21,10,4452) (#207)
4-(21,9,2226)
-
7-(24,12,2226) (#9396)
- family 118, lambda = 2240 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2240)
-
6-(24,12,6720) 6-(23,12,4480)
6-(23,11,2240)
-
5-(24,12,18240) (#3188) 5-(23,12,11520) 5-(22,12,7040)
5-(23,11,6720) 5-(22,11,4480) (#212)
5-(22,10,2240)
-
4-(24,12,45600) 4-(23,12,27360) 4-(22,12,15840) 4-(21,12,8800)
4-(23,11,18240) 4-(22,11,11520) 4-(21,11,7040)
4-(22,10,6720) 4-(21,10,4480) (#211)
4-(21,9,2240)
-
7-(24,12,2240)
- family 119, lambda = 2254 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 120, lambda = 2268 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2268) (#9414)
-
6-(24,12,6804) (#9413) 6-(23,12,4536) (#9421)
6-(23,11,2268) (#9410)
-
5-(24,12,18468) (#3227) 5-(23,12,11664) (#9418) 5-(22,12,7128) (#9425)
5-(23,11,6804) (#9411) 5-(22,11,4536) (#214)
5-(22,10,2268) (#9412)
-
4-(24,12,46170) 4-(23,12,27702) 4-(22,12,16038) 4-(21,12,8910)
4-(23,11,18468) 4-(22,11,11664) 4-(21,11,7128)
4-(22,10,6804) 4-(21,10,4536) (#213)
4-(21,9,2268)
-
7-(24,12,2268) (#9414)
- family 121, lambda = 2282 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2282) (#9432)
-
6-(24,12,6846) (#9431) 6-(23,12,4564) (#9439)
6-(23,11,2282) (#9428)
-
5-(24,12,18582) (#3247) 5-(23,12,11736) (#9436) 5-(22,12,7172) (#9443)
5-(23,11,6846) (#9429) 5-(22,11,4564) (#216)
5-(22,10,2282) (#9430)
-
4-(24,12,46455) 4-(23,12,27873) 4-(22,12,16137) 4-(21,12,8965)
4-(23,11,18582) 4-(22,11,11736) 4-(21,11,7172)
4-(22,10,6846) 4-(21,10,4564) (#215)
4-(21,9,2282)
-
7-(24,12,2282) (#9432)
- family 122, lambda = 2296 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 123, lambda = 2310 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2310)
-
6-(24,12,6930) 6-(23,12,4620)
6-(23,11,2310)
-
5-(24,12,18810) (#3291) 5-(23,12,11880) 5-(22,12,7260)
5-(23,11,6930) 5-(22,11,4620) (#218)
5-(22,10,2310)
-
4-(24,12,47025) 4-(23,12,28215) 4-(22,12,16335) 4-(21,12,9075)
4-(23,11,18810) 4-(22,11,11880) 4-(21,11,7260)
4-(22,10,6930) 4-(21,10,4620) (#217)
4-(21,9,2310)
-
7-(24,12,2310)
- family 124, lambda = 2324 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2324)
-
6-(24,12,6972) 6-(23,12,4648)
6-(23,11,2324)
-
5-(24,12,18924) (#3315) 5-(23,12,11952) 5-(22,12,7304)
5-(23,11,6972) 5-(22,11,4648) (#220)
5-(22,10,2324)
-
4-(24,12,47310) 4-(23,12,28386) 4-(22,12,16434) 4-(21,12,9130)
4-(23,11,18924) 4-(22,11,11952) 4-(21,11,7304)
4-(22,10,6972) 4-(21,10,4648) (#219)
4-(21,9,2324)
-
7-(24,12,2324)
- family 125, lambda = 2338 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 126, lambda = 2352 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2352) (#9448)
-
6-(24,12,7056) (#9447) 6-(23,12,4704) (#9455)
6-(23,11,2352) (#9446)
-
5-(24,12,19152) (#1039) 5-(23,12,12096) (#9452) 5-(22,12,7392) (#9459)
5-(23,11,7056) (#1038) 5-(22,11,4704) (#222)
5-(22,10,2352) (#1037)
-
4-(24,12,47880) 4-(23,12,28728) 4-(22,12,16632) 4-(21,12,9240)
4-(23,11,19152) 4-(22,11,12096) 4-(21,11,7392)
4-(22,10,7056) 4-(21,10,4704) (#221)
4-(21,9,2352)
-
7-(24,12,2352) (#9448)
- family 127, lambda = 2394 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 128, lambda = 2408 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2408) (#9466)
-
6-(24,12,7224) (#9465) 6-(23,12,4816) (#9473)
6-(23,11,2408) (#9462)
-
5-(24,12,19608) (#3435) 5-(23,12,12384) (#9470) 5-(22,12,7568) (#9477)
5-(23,11,7224) (#9463) 5-(22,11,4816) (#226)
5-(22,10,2408) (#9464)
-
4-(24,12,49020) 4-(23,12,29412) 4-(22,12,17028) 4-(21,12,9460)
4-(23,11,19608) 4-(22,11,12384) 4-(21,11,7568)
4-(22,10,7224) 4-(21,10,4816) (#225)
4-(21,9,2408)
-
7-(24,12,2408) (#9466)
- family 129, lambda = 2422 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 130, lambda = 2436 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2436)
-
6-(24,12,7308) 6-(23,12,4872)
6-(23,11,2436)
-
5-(24,12,19836) (#1042) 5-(23,12,12528) 5-(22,12,7656)
5-(23,11,7308) (#1041) 5-(22,11,4872) (#228)
5-(22,10,2436) (#1040)
-
4-(24,12,49590) 4-(23,12,29754) 4-(22,12,17226) 4-(21,12,9570)
4-(23,11,19836) 4-(22,11,12528) 4-(21,11,7656)
4-(22,10,7308) 4-(21,10,4872) (#227)
4-(21,9,2436)
-
7-(24,12,2436)
- family 131, lambda = 2450 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2450) (#9484)
-
6-(24,12,7350) (#9483) 6-(23,12,4900) (#9491)
6-(23,11,2450) (#9480)
-
5-(24,12,19950) (#3499) 5-(23,12,12600) (#9488) 5-(22,12,7700) (#9495)
5-(23,11,7350) (#9481) 5-(22,11,4900) (#230)
5-(22,10,2450) (#9482)
-
4-(24,12,49875) 4-(23,12,29925) 4-(22,12,17325) 4-(21,12,9625)
4-(23,11,19950) 4-(22,11,12600) 4-(21,11,7700)
4-(22,10,7350) 4-(21,10,4900) (#229)
4-(21,9,2450)
-
7-(24,12,2450) (#9484)
- family 132, lambda = 2464 containing 4 designs:
minpath=(1, 0, 0) minimal_t=5 - family 133, lambda = 2478 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2478)
-
6-(24,12,7434) 6-(23,12,4956)
6-(23,11,2478)
-
5-(24,12,20178) (#3538) 5-(23,12,12744) 5-(22,12,7788)
5-(23,11,7434) 5-(22,11,4956) (#232)
5-(22,10,2478)
-
4-(24,12,50445) 4-(23,12,30267) 4-(22,12,17523) 4-(21,12,9735)
4-(23,11,20178) 4-(22,11,12744) 4-(21,11,7788)
4-(22,10,7434) 4-(21,10,4956) (#231)
4-(21,9,2478)
-
7-(24,12,2478)
- family 134, lambda = 2492 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2492)
-
6-(24,12,7476) 6-(23,12,4984)
6-(23,11,2492)
-
5-(24,12,20292) (#3558) 5-(23,12,12816) 5-(22,12,7832)
5-(23,11,7476) 5-(22,11,4984) (#234)
5-(22,10,2492)
-
4-(24,12,50730) 4-(23,12,30438) 4-(22,12,17622) 4-(21,12,9790)
4-(23,11,20292) 4-(22,11,12816) 4-(21,11,7832)
4-(22,10,7476) 4-(21,10,4984) (#233)
4-(21,9,2492)
-
7-(24,12,2492)
- family 135, lambda = 2506 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 136, lambda = 2520 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2520) (#9500)
-
6-(24,12,7560) (#9499) 6-(23,12,5040) (#9507)
6-(23,11,2520) (#9498)
-
5-(24,12,20520) (#1049) 5-(23,12,12960) (#9504) 5-(22,12,7920) (#9511)
5-(23,11,7560) (#1048) 5-(22,11,5040) (#238)
5-(22,10,2520) (#1047)
-
4-(24,12,51300) 4-(23,12,30780) 4-(22,12,17820) 4-(21,12,9900)
4-(23,11,20520) 4-(22,11,12960) 4-(21,11,7920)
4-(22,10,7560) 4-(21,10,5040) (#237)
4-(21,9,2520)
-
7-(24,12,2520) (#9500)
- family 137, lambda = 2534 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 138, lambda = 2562 containing 5 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2562)
-
6-(24,12,7686) 6-(23,12,5124)
6-(23,11,2562)
-
5-(24,12,20862) (#1052) 5-(23,12,13176) 5-(22,12,8052)
5-(23,11,7686) (#1051) 5-(22,11,5124) (#240)
5-(22,10,2562) (#1050)
-
4-(24,12,52155) 4-(23,12,31293) 4-(22,12,18117) 4-(21,12,10065)
4-(23,11,20862) 4-(22,11,13176) 4-(21,11,8052)
4-(22,10,7686) 4-(21,10,5124) (#239)
4-(21,9,2562)
-
7-(24,12,2562)
- family 139, lambda = 2576 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2576) (#9518)
-
6-(24,12,7728) (#9517) 6-(23,12,5152) (#9524)
6-(23,11,2576) (#9514)
-
5-(24,12,20976) (#3673) 5-(23,12,13248) (#9521) 5-(22,12,8096) (#9528)
5-(23,11,7728) (#9515) 5-(22,11,5152) (#242)
5-(22,10,2576) (#9516)
-
4-(24,12,52440) 4-(23,12,31464) 4-(22,12,18216) 4-(21,12,10120)
4-(23,11,20976) 4-(22,11,13248) 4-(21,11,8096)
4-(22,10,7728) 4-(21,10,5152) (#241)
4-(21,9,2576)
-
7-(24,12,2576) (#9518)
- family 140, lambda = 2590 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 141, lambda = 2604 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2604)
-
6-(24,12,7812) 6-(23,12,5208)
6-(23,11,2604)
-
5-(24,12,21204) (#3712) 5-(23,12,13392) 5-(22,12,8184)
5-(23,11,7812) 5-(22,11,5208) (#244)
5-(22,10,2604)
-
4-(24,12,53010) 4-(23,12,31806) 4-(22,12,18414) 4-(21,12,10230)
4-(23,11,21204) 4-(22,11,13392) 4-(21,11,8184)
4-(22,10,7812) 4-(21,10,5208) (#243)
4-(21,9,2604)
-
7-(24,12,2604)
- family 142, lambda = 2632 containing 4 designs:
minpath=(1, 0, 0) minimal_t=5 - family 143, lambda = 2646 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2646) (#9535)
-
6-(24,12,7938) (#9534) 6-(23,12,5292) (#9542)
6-(23,11,2646) (#9531)
-
5-(24,12,21546) (#3775) 5-(23,12,13608) (#9539) 5-(22,12,8316) (#9546)
5-(23,11,7938) (#9532) 5-(22,11,5292) (#248)
5-(22,10,2646) (#9533)
-
4-(24,12,53865) 4-(23,12,32319) 4-(22,12,18711) 4-(21,12,10395)
4-(23,11,21546) 4-(22,11,13608) 4-(21,11,8316)
4-(22,10,7938) 4-(21,10,5292) (#247)
4-(21,9,2646)
-
7-(24,12,2646) (#9535)
- family 144, lambda = 2660 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2660) (#9553)
-
6-(24,12,7980) (#9552) 6-(23,12,5320) (#9560)
6-(23,11,2660) (#9549)
-
5-(24,12,21660) (#3795) 5-(23,12,13680) (#9557) 5-(22,12,8360) (#9564)
5-(23,11,7980) (#9550) 5-(22,11,5320) (#252)
5-(22,10,2660) (#9551)
-
4-(24,12,54150) 4-(23,12,32490) 4-(22,12,18810) 4-(21,12,10450)
4-(23,11,21660) 4-(22,11,13680) 4-(21,11,8360)
4-(22,10,7980) 4-(21,10,5320) (#251)
4-(21,9,2660)
-
7-(24,12,2660) (#9553)
- family 145, lambda = 2674 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 146, lambda = 2688 containing 4 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2688)
-
6-(24,12,8064) 6-(23,12,5376)
6-(23,11,2688)
-
5-(24,12,21888) (#3834) 5-(23,12,13824) 5-(22,12,8448)
5-(23,11,8064) 5-(22,11,5376) (#254)
5-(22,10,2688)
-
4-(24,12,54720) 4-(23,12,32832) 4-(22,12,19008) 4-(21,12,10560)
4-(23,11,21888) 4-(22,11,13824) 4-(21,11,8448)
4-(22,10,8064) 4-(21,10,5376) (#253)
4-(21,9,2688) (#374)
-
7-(24,12,2688)
- family 147, lambda = 2702 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2702)
-
6-(24,12,8106) 6-(23,12,5404)
6-(23,11,2702)
-
5-(24,12,22002) (#3853) 5-(23,12,13896) 5-(22,12,8492)
5-(23,11,8106) 5-(22,11,5404) (#256)
5-(22,10,2702)
-
4-(24,12,55005) 4-(23,12,33003) 4-(22,12,19107) 4-(21,12,10615)
4-(23,11,22002) 4-(22,11,13896) 4-(21,11,8492)
4-(22,10,8106) 4-(21,10,5404) (#255)
4-(21,9,2702)
-
7-(24,12,2702)
- family 148, lambda = 2716 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 149, lambda = 2744 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 150, lambda = 2758 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 151, lambda = 2772 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2772) (#9600)
-
6-(24,12,8316) (#9599) 6-(23,12,5544) (#9606)
6-(23,11,2772) (#9598)
-
5-(24,12,22572) (#1058) 5-(23,12,14256) (#9603) 5-(22,12,8712) (#9610)
5-(23,11,8316) (#1057) 5-(22,11,5544) (#260)
5-(22,10,2772) (#1056)
-
4-(24,12,56430) 4-(23,12,33858) 4-(22,12,19602) 4-(21,12,10890)
4-(23,11,22572) 4-(22,11,14256) 4-(21,11,8712)
4-(22,10,8316) 4-(21,10,5544) (#259)
4-(21,9,2772)
-
7-(24,12,2772) (#9600)
- family 152, lambda = 2786 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2786) (#9617)
-
6-(24,12,8358) (#9616) 6-(23,12,5572) (#9623)
6-(23,11,2786) (#9613)
-
5-(24,12,22686) (#3968) 5-(23,12,14328) (#9620) 5-(22,12,8756) (#9627)
5-(23,11,8358) (#9614) 5-(22,11,5572) (#262)
5-(22,10,2786) (#9615)
-
4-(24,12,56715) 4-(23,12,34029) 4-(22,12,19701) 4-(21,12,10945)
4-(23,11,22686) 4-(22,11,14328) 4-(21,11,8756)
4-(22,10,8358) 4-(21,10,5572) (#261)
4-(21,9,2786)
-
7-(24,12,2786) (#9617)
- family 153, lambda = 2800 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 154, lambda = 2814 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 155, lambda = 2828 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2828)
-
6-(24,12,8484) 6-(23,12,5656)
6-(23,11,2828)
-
5-(24,12,23028) (#4028) 5-(23,12,14544) 5-(22,12,8888)
5-(23,11,8484) 5-(22,11,5656) (#264)
5-(22,10,2828)
-
4-(24,12,57570) 4-(23,12,34542) 4-(22,12,19998) 4-(21,12,11110)
4-(23,11,23028) 4-(22,11,14544) 4-(21,11,8888)
4-(22,10,8484) 4-(21,10,5656) (#263)
4-(21,9,2828)
-
7-(24,12,2828)
- family 156, lambda = 2842 containing 1 designs:
minpath=(2, 0, 0) minimal_t=5 - family 157, lambda = 2870 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2870)
-
6-(24,12,8610) 6-(23,12,5740)
6-(23,11,2870)
-
5-(24,12,23370) (#4085) 5-(23,12,14760) 5-(22,12,9020)
5-(23,11,8610) 5-(22,11,5740) (#268)
5-(22,10,2870)
-
4-(24,12,58425) 4-(23,12,35055) 4-(22,12,20295) 4-(21,12,11275)
4-(23,11,23370) 4-(22,11,14760) 4-(21,11,9020)
4-(22,10,8610) 4-(21,10,5740) (#267)
4-(21,9,2870)
-
7-(24,12,2870)
- family 158, lambda = 2884 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2884)
-
6-(24,12,8652) 6-(23,12,5768)
6-(23,11,2884)
-
5-(24,12,23484) (#4110) 5-(23,12,14832) 5-(22,12,9064)
5-(23,11,8652) 5-(22,11,5768) (#270)
5-(22,10,2884)
-
4-(24,12,58710) 4-(23,12,35226) 4-(22,12,20394) 4-(21,12,11330)
4-(23,11,23484) 4-(22,11,14832) 4-(21,11,9064)
4-(22,10,8652) 4-(21,10,5768) (#269)
4-(21,9,2884)
-
7-(24,12,2884)
- family 159, lambda = 2898 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2898) (#9632)
-
6-(24,12,8694) (#9631) 6-(23,12,5796) (#9638)
6-(23,11,2898) (#9630)
-
5-(24,12,23598) (#1061) 5-(23,12,14904) (#9635) 5-(22,12,9108) (#9642)
5-(23,11,8694) (#1060) 5-(22,11,5796) (#272)
5-(22,10,2898) (#1059)
-
4-(24,12,58995) 4-(23,12,35397) 4-(22,12,20493) 4-(21,12,11385)
4-(23,11,23598) 4-(22,11,14904) 4-(21,11,9108)
4-(22,10,8694) 4-(21,10,5796) (#271)
4-(21,9,2898)
-
7-(24,12,2898) (#9632)
- family 160, lambda = 2926 containing 6 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2926)
-
6-(24,12,8778) (#9814) 6-(23,12,5852)
6-(23,11,2926)
-
5-(24,12,23826) (#4167) 5-(23,12,15048) (#9816) 5-(22,12,9196)
5-(23,11,8778) (#9815) 5-(22,11,5852) (#276)
5-(22,10,2926)
-
4-(24,12,59565) 4-(23,12,35739) 4-(22,12,20691) 4-(21,12,11495)
4-(23,11,23826) 4-(22,11,15048) 4-(21,11,9196)
4-(22,10,8778) 4-(21,10,5852) (#275)
4-(21,9,2926)
-
7-(24,12,2926)
- family 161, lambda = 2940 containing 6 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2940)
-
6-(24,12,8820) (#9820) 6-(23,12,5880)
6-(23,11,2940)
-
5-(24,12,23940) (#4186) 5-(23,12,15120) (#9822) 5-(22,12,9240)
5-(23,11,8820) (#9821) 5-(22,11,5880) (#278)
5-(22,10,2940)
-
4-(24,12,59850) 4-(23,12,35910) 4-(22,12,20790) 4-(21,12,11550)
4-(23,11,23940) 4-(22,11,15120) 4-(21,11,9240)
4-(22,10,8820) 4-(21,10,5880) (#277)
4-(21,9,2940)
-
7-(24,12,2940)
- family 162, lambda = 2954 containing 6 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2954)
-
6-(24,12,8862) (#9826) 6-(23,12,5908)
6-(23,11,2954)
-
5-(24,12,24054) (#4205) 5-(23,12,15192) (#9828) 5-(22,12,9284)
5-(23,11,8862) (#9827) 5-(22,11,5908) (#280)
5-(22,10,2954)
-
4-(24,12,60135) 4-(23,12,36081) 4-(22,12,20889) 4-(21,12,11605)
4-(23,11,24054) 4-(22,11,15192) 4-(21,11,9284)
4-(22,10,8862) 4-(21,10,5908) (#279)
4-(21,9,2954)
-
7-(24,12,2954)
- family 163, lambda = 2968 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2968)
-
6-(24,12,8904) 6-(23,12,5936)
6-(23,11,2968)
-
5-(24,12,24168) (#4225) 5-(23,12,15264) 5-(22,12,9328)
5-(23,11,8904) 5-(22,11,5936) (#282)
5-(22,10,2968)
-
4-(24,12,60420) 4-(23,12,36252) 4-(22,12,20988) 4-(21,12,11660)
4-(23,11,24168) 4-(22,11,15264) 4-(21,11,9328)
4-(22,10,8904) 4-(21,10,5936) (#281)
4-(21,9,2968)
-
7-(24,12,2968)
- family 164, lambda = 2982 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2982) (#9674)
-
6-(24,12,8946) (#9673) 6-(23,12,5964) (#9680)
6-(23,11,2982) (#9670)
-
5-(24,12,24282) (#4245) 5-(23,12,15336) (#9677) 5-(22,12,9372) (#9684)
5-(23,11,8946) (#9671) 5-(22,11,5964) (#284)
5-(22,10,2982) (#9672)
-
4-(24,12,60705) 4-(23,12,36423) 4-(22,12,21087) 4-(21,12,11715)
4-(23,11,24282) 4-(22,11,15336) 4-(21,11,9372)
4-(22,10,8946) 4-(21,10,5964) (#283)
4-(21,9,2982)
-
7-(24,12,2982) (#9674)
- family 165, lambda = 2996 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,2996)
-
6-(24,12,8988) 6-(23,12,5992)
6-(23,11,2996)
-
5-(24,12,24396) (#4264) 5-(23,12,15408) 5-(22,12,9416)
5-(23,11,8988) 5-(22,11,5992) (#286)
5-(22,10,2996)
-
4-(24,12,60990) 4-(23,12,36594) 4-(22,12,21186) 4-(21,12,11770)
4-(23,11,24396) 4-(22,11,15408) 4-(21,11,9416)
4-(22,10,8988) 4-(21,10,5992) (#285)
4-(21,9,2996)
-
7-(24,12,2996)
- family 166, lambda = 3010 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,3010)
-
6-(24,12,9030) 6-(23,12,6020)
6-(23,11,3010)
-
5-(24,12,24510) (#4284) 5-(23,12,15480) 5-(22,12,9460)
5-(23,11,9030) 5-(22,11,6020) (#288)
5-(22,10,3010)
-
4-(24,12,61275) 4-(23,12,36765) 4-(22,12,21285) 4-(21,12,11825)
4-(23,11,24510) 4-(22,11,15480) 4-(21,11,9460)
4-(22,10,9030) 4-(21,10,6020) (#287)
4-(21,9,3010)
-
7-(24,12,3010)
- family 167, lambda = 3024 containing 4 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,3024)
-
6-(24,12,9072) 6-(23,12,6048)
6-(23,11,3024)
-
5-(24,12,24624) (#4304) 5-(23,12,15552) 5-(22,12,9504)
5-(23,11,9072) 5-(22,11,6048) (#290)
5-(22,10,3024)
-
4-(24,12,61560) 4-(23,12,36936) 4-(22,12,21384) 4-(21,12,11880)
4-(23,11,24624) 4-(22,11,15552) 4-(21,11,9504)
4-(22,10,9072) 4-(21,10,6048) (#289)
4-(21,9,3024) (#375)
-
7-(24,12,3024)
- family 168, lambda = 3038 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,3038) (#9691)
-
6-(24,12,9114) (#9690) 6-(23,12,6076) (#9697)
6-(23,11,3038) (#9687)
-
5-(24,12,24738) (#4324) 5-(23,12,15624) (#9694) 5-(22,12,9548) (#9701)
5-(23,11,9114) (#9688) 5-(22,11,6076) (#292)
5-(22,10,3038) (#9689)
-
4-(24,12,61845) 4-(23,12,37107) 4-(22,12,21483) 4-(21,12,11935)
4-(23,11,24738) 4-(22,11,15624) 4-(21,11,9548)
4-(22,10,9114) 4-(21,10,6076) (#291)
4-(21,9,3038)
-
7-(24,12,3038) (#9691)
- family 169, lambda = 3052 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,3052)
-
6-(24,12,9156) 6-(23,12,6104)
6-(23,11,3052)
-
5-(24,12,24852) (#4343) 5-(23,12,15696) 5-(22,12,9592)
5-(23,11,9156) 5-(22,11,6104) (#294)
5-(22,10,3052)
-
4-(24,12,62130) 4-(23,12,37278) 4-(22,12,21582) 4-(21,12,11990)
4-(23,11,24852) 4-(22,11,15696) 4-(21,11,9592)
4-(22,10,9156) 4-(21,10,6104) (#293)
4-(21,9,3052)
-
7-(24,12,3052)
- family 170, lambda = 3066 containing 3 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,3066)
-
6-(24,12,9198) 6-(23,12,6132)
6-(23,11,3066)
-
5-(24,12,24966) (#4363) 5-(23,12,15768) 5-(22,12,9636)
5-(23,11,9198) 5-(22,11,6132) (#296)
5-(22,10,3066)
-
4-(24,12,62415) 4-(23,12,37449) 4-(22,12,21681) 4-(21,12,12045)
4-(23,11,24966) 4-(22,11,15768) 4-(21,11,9636)
4-(22,10,9198) 4-(21,10,6132) (#295)
4-(21,9,3066)
-
7-(24,12,3066)
- family 171, lambda = 3080 containing 11 designs:
minpath=(0, 0, 0) minimal_t=4-
7-(24,12,3080) (#9708)
-
6-(24,12,9240) (#9707) 6-(23,12,6160) (#9714)
6-(23,11,3080) (#9704)
-
5-(24,12,25080) (#4382) 5-(23,12,15840) (#9711) 5-(22,12,9680) (#9718)
5-(23,11,9240) (#9705) 5-(22,11,6160) (#300)
5-(22,10,3080) (#9706)
-
4-(24,12,62700) 4-(23,12,37620) 4-(22,12,21780) 4-(21,12,12100)
4-(23,11,25080) 4-(22,11,15840) 4-(21,11,9680)
4-(22,10,9240) 4-(21,10,6160) (#299)
4-(21,9,3080)
-
7-(24,12,3080) (#9708)
created: Fri Oct 23 11:20:48 CEST 2009