design clan: 9_36_12
9-(36,12,m*15), 1 <= m <= 97; (46/239) lambda_max=2925, lambda_max_half=1462
the clan contains 46 families:
- family 0, lambda = 15 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 1, lambda = 30 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 2, lambda = 105 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,105)
-
6-(34,10,735) (#12691) 6-(33,10,630)
6-(33,9,105) (#12431)
-
5-(34,10,4263) (#12692) 5-(33,10,3528) (#12693) 5-(32,10,2898)
5-(33,9,735) (#12432) 5-(32,9,630) (#12433)
5-(32,8,105) (#8213)
-
7-(34,10,105)
- family 3, lambda = 120 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5 - family 4, lambda = 165 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5 - family 5, lambda = 210 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 6, lambda = 240 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,240)
-
6-(34,10,1680) (#12696) 6-(33,10,1440)
6-(33,9,240) (#12545)
-
5-(34,10,9744) (#12697) 5-(33,10,8064) (#12698) 5-(32,10,6624)
5-(33,9,1680) (#12546) 5-(32,9,1440) (#12547)
5-(32,8,240) (#8235)
-
7-(34,10,240)
- family 7, lambda = 255 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 8, lambda = 285 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,285)
-
6-(34,10,1995) (#12701) 6-(33,10,1710)
6-(33,9,285) (#12551)
-
5-(34,10,11571) (#12702) 5-(33,10,9576) (#12703) 5-(32,10,7866)
5-(33,9,1995) (#12552) 5-(32,9,1710) (#12553)
5-(32,8,285) (#8245)
-
7-(34,10,285)
- family 9, lambda = 330 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 10, lambda = 345 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,345)
-
6-(34,10,2415) (#12714) 6-(33,10,2070)
6-(33,9,345) (#12565)
-
5-(34,10,14007) (#12715) 5-(33,10,11592) (#12716) 5-(32,10,9522)
5-(33,9,2415) (#12566) 5-(32,9,2070) (#12567)
5-(32,8,345) (#8258)
-
7-(34,10,345)
- family 11, lambda = 420 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,420)
-
6-(34,10,2940) (#12729) 6-(33,10,2520)
6-(33,9,420) (#12583)
-
5-(34,10,17052) (#12730) 5-(33,10,14112) (#12731) 5-(32,10,11592)
5-(33,9,2940) (#12584) 5-(32,9,2520) (#12585)
5-(32,8,420) (#8274)
-
7-(34,10,420)
- family 12, lambda = 435 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 13, lambda = 465 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,465)
-
6-(34,10,3255) (#12734) 6-(33,10,2790)
6-(33,9,465) (#12589)
-
5-(34,10,18879) (#12735) 5-(33,10,15624) (#12736) 5-(32,10,12834)
5-(33,9,3255) (#12590) 5-(32,9,2790) (#12591)
5-(32,8,465) (#8284)
-
7-(34,10,465)
- family 14, lambda = 480 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,480)
-
6-(34,10,3360) (#12739) 6-(33,10,2880)
6-(33,9,480) (#12595)
-
5-(34,10,19488) (#12740) 5-(33,10,16128) (#12741) 5-(32,10,13248)
5-(33,9,3360) (#12596) 5-(32,9,2880) (#12597)
5-(32,8,480) (#8287)
-
7-(34,10,480)
- family 15, lambda = 555 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 16, lambda = 570 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 17, lambda = 615 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 18, lambda = 645 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 19, lambda = 660 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 20, lambda = 690 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 21, lambda = 705 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 22, lambda = 735 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 23, lambda = 795 containing 5 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,795)
-
6-(34,10,5565) (#12803) 6-(33,10,4770)
6-(33,9,795)
-
5-(34,10,32277) (#12804) 5-(33,10,26712) (#12806) 5-(32,10,21942)
5-(33,9,5565) (#12805) 5-(32,9,4770)
5-(32,8,795) (#8357)
-
7-(34,10,795)
- family 24, lambda = 840 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 25, lambda = 870 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5-
7-(34,10,870)
-
6-(34,10,6090) 6-(33,10,5220) (#12397)
6-(33,9,870)
-
5-(34,10,35322) (#12405) 5-(33,10,29232) (#12398) 5-(32,10,24012) (#12400)
5-(33,9,6090) (#12404) 5-(32,9,5220) (#12399)
5-(32,8,870) (#8374)
-
7-(34,10,870)
- family 26, lambda = 885 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 27, lambda = 915 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 28, lambda = 930 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 29, lambda = 960 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 30, lambda = 1005 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 31, lambda = 1020 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 32, lambda = 1065 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 33, lambda = 1095 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 34, lambda = 1110 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 35, lambda = 1140 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 36, lambda = 1155 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 37, lambda = 1185 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 38, lambda = 1230 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 39, lambda = 1245 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 40, lambda = 1290 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 41, lambda = 1320 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 42, lambda = 1335 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 43, lambda = 1380 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5 - family 44, lambda = 1410 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5 - family 45, lambda = 1455 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
created: Fri Oct 23 11:20:58 CEST 2009