t designs with small t, id ge 8200
# 8200: 5-(32,8,15)
- clan: 9-(36,12,15), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,20)
- $PSL(2,31)$
- clan: 6-(33,8,3), 1 times residual
- $PSL(2,31)$
- clan: 9-(36,12,30), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,40)
- $PSL(2,31)$
- clan: 10-(36,12,5), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- clan: 6-(33,8,6), 1 times residual
- $PSL(2,31)$
- clan: 5-(32,8,55)
- $PSL(2,31)$
- clan: 10-(37,12,9), 4 times derived, 1 times residual
- $PSL(2,31)$
- clan: 5-(32,8,80)
- $PSL(2,31)$
- clan: 5-(32,8,85)
- $PSL(2,31)$
- clan: 10-(36,12,10), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,95)
- $PSL(2,31)$
- clan: 9-(36,12,105), 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,105) (# 12431)
- clan: 6-(33,8,15), 1 times residual
- $PSL(2,31)$
- clan: 6-(33,8,15), 1 times reduced t
- Tran van Trung construction (left) for 5-(32,8,125) (# 8214) : der= 5-(32,7,15) and res= 5-(32,8,125) - the given design is the residual.
- \cite{Sebille98} $P\Gamma L(2,32)$
- clan: 5-(32,8,130)
- $PSL(2,31)$
- clan: 5-(32,8,155)
- $PSL(2,31)$
- clan: 5-(32,8,160)
- $PSL(2,31)$
- clan: 9-(36,12,165), 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,165) (# 12528)
- clan: 5-(32,8,170)
- $PSL(2,31)$
- clan: 6-(33,8,21), 1 times residual
- $PSL(2,31)$
- clan: 6-(33,8,21), 1 times reduced t
- Tran van Trung construction (left) for 5-(32,8,175) (# 8221) : der= 5-(32,7,21) and res= 5-(32,8,175) - the given design is the residual.
- clan: 10-(36,12,20), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,180) (# 12534)
- clan: 5-(32,8,185)
- $PSL(2,31)$
- clan: 5-(32,8,190)
- $PSL(2,31)$
- clan: 21-(48,24,195), 16 times derived
- $PSL(2,31)$
- clan: 6-(33,8,24), 1 times residual
- $PSL(2,31)$
- clan: 5-(32,8,205)
- $PSL(2,31)$
- clan: 9-(36,12,210), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,215)
- $PSL(2,31)$
- clan: 5-(32,8,220)
- $PSL(2,31)$
- clan: 11-(37,12,2), 1 times reduced t, 4 times derived, 1 times residual
- $PSL(2,31)$
- derived from 6-(33,9,225) (# 12540)
- clan: 5-(32,8,230)
- $PSL(2,31)$
- clan: 5-(32,8,235)
- $PSL(2,31)$
- clan: 9-(36,12,240), 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,240) (# 12545)
- clan: 5-(32,8,245)
- $PSL(2,31)$
- clan: 6-(33,8,30), 1 times residual
- $PSL(2,31)$
- clan: 6-(33,8,30), 1 times reduced t
- Tran van Trung construction (left) for 5-(32,8,250) (# 8237) : der= 5-(32,7,30) and res= 5-(32,8,250) - the given design is the residual.
- clan: 9-(36,12,255), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,260)
- $PSL(2,31)$
- clan: 5-(32,8,265)
- $PSL(2,31)$
- clan: 10-(36,12,30), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- clan: 6-(33,8,33), 1 times residual
- $PSL(2,31)$
- clan: 5-(32,8,280)
- $PSL(2,31)$
- clan: 9-(36,12,285), 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,285) (# 12551)
- clan: 5-(32,8,290)
- $PSL(2,31)$
- clan: 5-(32,8,295)
- $PSL(2,31)$
- clan: 10-(37,12,36), 4 times derived, 1 times residual
- $PSL(2,31)$
- residual design of 6-(33,8,36) (# 12415)
- derived from 6-(33,9,300) (# 12557)
- clan: 10-(37,12,36), 1 times reduced t, 4 times derived
- Tran van Trung construction (left) for 5-(32,8,300) (# 8248) : der= 5-(32,7,36) and res= 5-(32,8,300) - the given design is the residual.
- design 6-(33,8,36) (# 12415) with respect to smaller t
- derived from 6-(34,9,336) (# 12562)
- clan: 5-(32,8,305)
- $PSL(2,31)$
- clan: 5-(32,8,310)
- $PSL(2,31)$
- clan: 10-(36,12,35), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,320)
- $PSL(2,31)$
- clan: 7-(34,8,3), 2 times residual
- $PSL(2,31)$
- clan: 9-(36,12,330), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,335)
- $PSL(2,31)$
- clan: 5-(32,8,340)
- $PSL(2,31)$
- clan: 9-(36,12,345), 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,345) (# 12565)
- clan: 6-(33,8,42), 1 times residual
- $PSL(2,31)$
- clan: 5-(32,8,355)
- $PSL(2,31)$
- clan: 10-(36,12,40), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,360) (# 12571)
- clan: 5-(32,8,365)
- $AGL(4,2)\times C_2$ 4 solutions
- clan: 5-(32,8,370)
- $PSL(2,31)$
- clan: 10-(37,12,45), 4 times derived, 1 times residual
- $PSL(2,31)$
- clan: 10-(37,12,45), 1 times reduced t, 4 times derived
- Tran van Trung construction (left) for 5-(32,8,375) (# 8264) : der= 5-(32,7,45) and res= 5-(32,8,375) - the given design is the residual.
- clan: 5-(32,8,380)
- $PSL(2,31)$
- clan: 5-(32,8,385)
- $PSL(2,31)$
- clan: 21-(48,24,390), 16 times derived
- $PSL(2,31)$
- clan: 5-(32,8,395)
- $PSL(2,31)$
- clan: 6-(33,8,48), 1 times residual
- $AGL(4,2)\times C_2$ 8 solutions
- clan: 10-(36,12,45), 1 times reduced t, 4 times derived
- $AGL(4,2)\times C_2$ 1 solution
- derived from 6-(33,9,405) (# 12577)
- clan: 5-(32,8,410)
- $PSL(2,31)$
- clan: 5-(32,8,415)
- $PSL(2,31)$
- clan: 9-(36,12,420), 4 times derived
- $AGL(4,2)\times C_2$ 6 solutions
- $PSL(2,31)$
- derived from 6-(33,9,420) (# 12583)
- clan: 6-(33,8,51), 1 times residual
- $AGL(4,2)\times C_2$ 5 solutions
- clan: 6-(33,8,51), 1 times reduced t
- Tran van Trung construction (left) for 5-(32,8,425) (# 8275) : der= 5-(32,7,51) and res= 5-(32,8,425) - the given design is the residual.
- clan: 5-(32,8,430)
- $PSL(2,31)$
- clan: 9-(36,12,435), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,440)
- $AGL(4,2)\times C_2$ 2 solutions
- clan: 5-(32,8,445)
- $PSL(2,31)$
- clan: 11-(37,12,4), 1 times reduced t, 4 times derived, 1 times residual
- $PSL(2,31)$
- clan: 5-(32,8,455)
- $PSL(2,31)$
- clan: 5-(32,8,460)
- $AGL(4,2)\times C_2$ 37 solutions
- clan: 9-(36,12,465), 4 times derived
- $AGL(4,2)\times C_2$ 12 solutions
- derived from 6-(33,9,465) (# 12589)
- clan: 5-(32,8,470)
- $PSL(2,31)$
- clan: 6-(33,8,57), 1 times residual
- $PSL(2,31)$
- clan: 9-(36,12,480), 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,480) (# 12595)
- clan: 5-(32,8,485)
- $PSL(2,31)$
- clan: 5-(32,8,490)
- $PSL(2,31)$
- clan: 10-(36,12,55), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- clan: 6-(33,8,60), 1 times residual
- $AGL(4,2)\times C_2$ 118 solutions
- $PSL(2,31)$
- clan: 6-(33,8,60), 1 times reduced t
- Tran van Trung construction (left) for 5-(32,8,500) (# 8291) : der= 5-(32,7,60) and res= 5-(32,8,500) - the given design is the residual.
- clan: 5-(32,8,505)
- $AGL(4,2)\times C_2$ 95 solutions
- clan: 5-(32,8,520)
- $PSL(2,31)$
- clan: 10-(37,12,63), 4 times derived, 1 times residual
- $AGL(4,2)\times C_2$ 6 solutions
- derived from 6-(33,9,525) (# 16341)
- derived from supplementary of 6-(33,9,2400) (# 16343)
- clan: 10-(37,12,63), 1 times reduced t, 4 times derived
- Tran van Trung construction (left) for 5-(32,8,525) (# 8295) : der= 5-(32,7,63) and res= 5-(32,8,525) - the given design is the residual.
- clan: 5-(32,8,530)
- $PSL(2,31)$
- clan: 5-(32,8,535)
- $PSL(2,31)$
- clan: 10-(36,12,60), 1 times reduced t, 4 times derived
- $AGL(4,2)\times C_2$ 174 solutions
- derived from 6-(33,9,540) (# 12601)
- design 6-(32,8,60) (# 16284) with respect to smaller t
- derived from supplementary of 6-(33,9,2385) (# 16286)
- supplementary design of 6-(32,8,265) (# 16287) with respect to smaller t
- Tran van Trung construction (right) for 5-(31,7,60) (# 16289) : der= 5-(31,7,60) and res= 5-(31,8,480) - the given design is the derived.
- Tran van Trung construction (left) for 5-(31,8,480) (# 16290) : der= 5-(31,7,60) and res= 5-(31,8,480) - the given design is the residual.
created: Fri Oct 23 11:11:38 CEST 2009