t designs with small t, id ge 8500
# 8500: 5-(32,8,1430)
- clan: 5-(32,8,1430)
- $PSL(2,31)$
- clan: 5-(32,8,1435)
- $PSL(2,31)$
- clan: 10-(36,12,160), 1 times reduced t, 4 times derived
- $PSL(2,31)$
- derived from 6-(33,9,1440) (# 12518)
- design 6-(32,8,160) (# 16272) with respect to smaller t
- derived from supplementary of 6-(33,9,1485) (# 16274)
- supplementary design of 6-(32,8,165) (# 16275) with respect to smaller t
- Tran van Trung construction (right) for 5-(31,7,160) (# 16277) : der= 5-(31,7,160) and res= 5-(31,8,1280) - the given design is the derived.
- Tran van Trung construction (left) for 5-(31,8,1280) (# 16278) : der= 5-(31,7,160) and res= 5-(31,8,1280) - the given design is the residual.
- clan: 5-(32,8,1445)
- $AGL(4,2)\times C_2$
- clan: 6-(33,8,174), 1 times residual
- $S4 \times PSL(2,7)$
- clan: 9-(36,12,1455), 4 times derived
- $PSL(2,31)$
- clan: 5-(32,8,1460)
- $PSL(2,31)$
- clan: 5-(33,6,4)
- $PGL(2,32)$ 39970 solutions
- clan: 5-(33,6,8)
- $PGL(2,32)$ 15382765 solutions
- clan: 5-(33,6,12)
- \cite{Sebille98} $P\Gamma L(2,32)$
- clan: 7-(34,8,3), 1 times reduced t, 1 times derived
- \cite{Sebille98} $P\Gamma L(2,32)$
- clan: 27-(56,28,5), 22 times derived
- \cite{Sebille98} $P\Gamma L(2,16)\times C_2$ 15 solutions, $PGL(2,16)\times C_2$ more than 250000000 solutions
- $P\Gamma L(2,32)+$ 6 solutions
- $P\Gamma L(2,16)\times C_2$ 23 solutions
- clan: 27-(56,28,4), 22 times derived
- $PGL(2,32)+$ 21945 solutions
- clan: 27-(56,28,9), 22 times derived
- $P\Gamma L(2,32)+$ 8 solutions
- derived from 6-(35,7,9) (# 12843)
- clan: 27-(56,28,12), 22 times derived
- \cite{Sebille98} $P\Gamma L(2,16)\times C_2$ 5304 solutions
- $PGL(2,16)\times Id_2$ > 8000000000 solutions
- clan: 27-(56,28,14), 21 times derived, 1 times residual
- $PGL(2,16)\times C_2$
- clan: 27-(56,28,15), 21 times derived, 1 times residual
- $PGL(2,16)\times C_2$
- clan: 27-(56,28,5), 21 times derived, 1 times residual
- \cite{Sebille98} $P\Gamma L(2,16)\times C_2$
- derived from 6-(35,8,70) (# 12849)
- clan: 27-(56,28,5), 1 times reduced t, 21 times derived
- Tran van Trung construction (left) for 5-(34,7,70) (# 8517) : der= 5-(34,6,5) and res= 5-(34,7,70) - the given design is the residual.
- clan: 29-(60,30,1), 24 times derived
- \cite{Bettenetal98a} $PGL(2,17)\times C_2$
- clan: 29-(60,30,10), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,11), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,12), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,14), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,15), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,16), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,2), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,3), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,4), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,5), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,6), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,7), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,8), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,9), 24 times derived
- $PGL(2,17)\times C_2$
- clan: 29-(60,30,11), 23 times derived, 1 times residual
- $S_9^{[2]}$ (>=1 isom. types)
- clan: 29-(60,30,11), 1 times reduced t, 23 times derived
- Tran van Trung construction (left) for 5-(36,7,165) (# 8534) : der= 5-(36,6,11) and res= 5-(36,7,165) - the given design is the residual.
- clan: 9-(42,10,12), 4 times derived
- \cite{Sebille98} $PGL(2,37)$
- clan: 9-(42,10,9), 4 times derived
- \cite{Sebille98} $PGL(2,37)$
- clan: 6-(38,7,12), 1 times reduced t
- $PGL(2,37)$
- clan: 30-(62,31,16), 1 times reduced t, 24 times derived
- $PGL(2,37)$ halving
- design 6-(38,7,16) (# 12900) with respect to smaller t
- supplementary design of 6-(38,7,16) (# 12900) with respect to smaller t
- Tran van Trung construction (right) for 5-(37,6,16) (# 12901) : der= 5-(37,6,16) and res= 5-(37,7,248) - the given design is the derived.
- Tran van Trung construction (left) for 5-(37,7,248) (# 12902) : der= 5-(37,6,16) and res= 5-(37,7,248) - the given design is the residual.
- derived from 6-(39,8,264) (# 12906)
- derived from supplementary of 6-(39,8,264) (# 12906)
- clan: 15-(49,16,16), 10 times derived
- $PSL(3,3) \times C_3$
- clan: 35-(72,36,13), 30 times derived
- $PGL(2,13)\times S_3$
- clan: 35-(72,36,17), 29 times derived, 1 times residual
- $PSL(3,4) \times C_2$ 3 solutions
- clan: 9-(50,12,1060), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,1120), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,1220), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,1280), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,1380), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,1440), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,3840), 4 times derived
- $M_{23}\times Id_2$
- clan: 39-(80,40,16), 32 times derived, 2 times residual
- $M_{23}\times Id_2$
- clan: 9-(50,12,4580), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,5380), 4 times derived
- $M_{23}\times Id_2$
- clan: 9-(50,12,800), 4 times derived
- $M_{23}\times Id_2$ 2 solutions
- clan: 9-(50,12,900), 4 times derived
- $M_{23}\times Id_2$ 2 solutions
- clan: 9-(50,12,960), 4 times derived
- $M_{23}\times Id_2$
- clan: 41-(84,42,1), 36 times derived
- \cite{Denniston76} \cite{Grannelletal93} $PSL(2,47)$ (459 isom. types)
- clan: 41-(84,42,13), 36 times derived
- $PSL(2,47)$
- clan: 41-(84,42,17), 36 times derived
- $PSL(2,47)$
- clan: 41-(84,42,18), 36 times derived
- $PSL(2,47)$
- clan: 41-(84,42,2), 36 times derived
- $PGL(2,23)\times C_2$, $PSL(2,47)$
- clan: 41-(84,42,20), 36 times derived
- $PGL(2,23)\times C_2$
- clan: 41-(84,42,21), 36 times derived
- $PSL(2,47)$
- clan: 41-(84,42,3), 36 times derived
- $PGL(2,23)\times C_2$, $PSL(2,47)$
- clan: 41-(84,42,4), 36 times derived
- $PGL(2,23)\times C_2$, $PSL(2,47)$
- clan: 41-(84,42,5), 36 times derived
- $PGL(2,23)\times C_2$, $PSL(2,47)$
- clan: 41-(84,42,6), 36 times derived
- $PGL(2,23)\times C_2$, $PSL(2,47)$
- clan: 41-(84,42,7), 36 times derived
- $PGL(2,23)\times C_2$, $PSL(2,47)$
- clan: 41-(84,42,8), 36 times derived
- $PSL(2,47)$
- clan: 41-(84,42,13), 35 times derived, 1 times residual
- $PSL(2,47)$
- clan: 41-(84,42,13), 1 times reduced t, 35 times derived
- Tran van Trung construction (left) for 5-(48,7,273) (# 8569) : der= 5-(48,6,13) and res= 5-(48,7,273) - the given design is the residual.
- clan: 8-(52,10,294), 3 times derived
- $AGL(2,7)$
- clan: 8-(52,10,316), 3 times derived
- $AGL(2,7)$
- clan: 45-(92,46,2), 40 times derived
- $P\Gamma L(2,25)\times C_2$ 160 solutions
- clan: 5-(54,6,24)
- $P\Gamma L(2,25)\times C_2$
- clan: 16-(74,18,648), 11 times derived
- $Sp(6,2)_{63}$
- clan: 57-(116,58,11), 52 times derived
- $ASL(3,4)$ 8 isomorphism types
- clan: 57-(116,58,3), 52 times derived
- $A\Gamma L(2,8)$ 190 isomorphism types
- clan: 26-(85,28,120), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,192), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,240), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,316), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,336), 21 times derived
- $AGL(3,4)$ many solutions
- clan: 26-(85,28,343), 21 times derived
- $AGL(3,4)$ many solutions
- clan: 26-(85,28,364), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,388), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,408), 21 times derived
- $ASL(3,4)$ many solutions
- clan: 26-(85,28,456), 21 times derived
- $ASL(3,4)$ many solutions
- clan: 26-(85,28,511), 21 times derived
- $AGL(3,4)$ many solutions
- clan: 26-(85,28,528), 21 times derived
- $ASL(3,4)$ many solutions
- clan: 26-(85,28,576), 21 times derived
- $ASL(3,4)$ many solutions
- clan: 26-(85,28,651), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,675), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 57-(116,58,24), 51 times derived, 1 times residual
- $AGL(3,4)$ many solutions
- clan: 26-(85,28,72), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,703), 21 times derived
- $AGL(3,4)$ many solutions
- clan: 26-(85,28,723), 21 times derived
- $A\Sigma L(3,4)$ many solutions
- clan: 26-(85,28,744), 21 times derived
- $ASL(3,4)$ many solutions
- clan: 26-(85,28,840), 21 times derived
- $AGL(3,4)$ many solutions
- clan: 15-(74,18,700), 10 times derived
- $AGL(3,4)$ many solutions
created: Fri Oct 23 11:12:00 CEST 2009