design clan: 11_30_15
11-(30,15,m*6), 1 <= m <= 323; (153/1256) lambda_max=3876, lambda_max_half=1938
the clan contains 153 families:
- family 0, lambda = 6 containing 1 designs:
minpath=(0, 6, 0) minimal_t=5 - family 1, lambda = 18 containing 1 designs:
minpath=(0, 6, 2) minimal_t=3 - family 2, lambda = 30 containing 1 designs:
minpath=(0, 5, 1) minimal_t=5 - family 3, lambda = 42 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5 - family 4, lambda = 54 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5 - family 5, lambda = 66 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,66)
-
10-(30,15,264) 10-(29,15,198)
10-(29,14,66)
-
9-(30,15,924) 9-(29,15,660) 9-(28,15,462)
9-(29,14,264) 9-(28,14,198)
9-(28,13,66)
-
8-(30,15,2904) 8-(29,15,1980) 8-(28,15,1320) 8-(27,15,858)
8-(29,14,924) 8-(28,14,660) 8-(27,14,462)
8-(28,13,264) 8-(27,13,198)
8-(27,12,66)
-
7-(30,15,8349) 7-(29,15,5445) 7-(28,15,3465) 7-(27,15,2145) 7-(26,15,1287)
7-(29,14,2904) 7-(28,14,1980) 7-(27,14,1320) 7-(26,14,858)
7-(28,13,924) 7-(27,13,660) 7-(26,13,462)
7-(27,12,264) 7-(26,12,198)
7-(26,11,66)
-
6-(30,15,22264) 6-(29,15,13915) 6-(28,15,8470) 6-(27,15,5005) 6-(26,15,2860) 6-(25,15,1573)
6-(29,14,8349) 6-(28,14,5445) 6-(27,14,3465) 6-(26,14,2145) 6-(25,14,1287)
6-(28,13,2904) 6-(27,13,1980) 6-(26,13,1320) 6-(25,13,858)
6-(27,12,924) 6-(26,12,660) 6-(25,12,462)
6-(26,11,264) 6-(25,11,198)
6-(25,10,66)
-
5-(30,15,55660) (#7301) 5-(29,15,33396) 5-(28,15,19481) 5-(27,15,11011) 5-(26,15,6006) 5-(25,15,3146) 5-(24,15,1573)
5-(29,14,22264) (#7300) 5-(28,14,13915) (#4955) 5-(27,14,8470) 5-(26,14,5005) 5-(25,14,2860) 5-(24,14,1573)
5-(28,13,8349) (#7299) 5-(27,13,5445) (#4954) 5-(26,13,3465) (#4952) 5-(25,13,2145) 5-(24,13,1287)
5-(27,12,2904) (#7298) 5-(26,12,1980) (#4953) 5-(25,12,1320) (#4951) 5-(24,12,858) (#4950)
5-(26,11,924) (#7297) 5-(25,11,660) (#1632) 5-(24,11,462) (#1631)
5-(25,10,264) (#7296) 5-(24,10,198) (#1333)
5-(24,9,66) (#7295)
-
11-(30,15,66)
- family 6, lambda = 78 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5 - family 7, lambda = 90 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,90)
-
7-(27,12,360) 7-(26,12,270)
7-(26,11,90)
-
6-(27,12,1260) 6-(26,12,900) 6-(25,12,630)
6-(26,11,360) 6-(25,11,270)
6-(25,10,90)
-
5-(27,12,3960) 5-(26,12,2700) 5-(25,12,1800) 5-(24,12,1170) (#1988)
5-(26,11,1260) 5-(25,11,900) 5-(24,11,630)
5-(25,10,360) (#7507) 5-(24,10,270) (#1376)
5-(24,9,90) (#7506)
-
8-(27,12,90)
- family 8, lambda = 102 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,102)
-
5-(25,10,408) (#6199) 5-(24,10,306) (#1398)
5-(24,9,102) (#6198)
-
6-(25,10,102)
- family 9, lambda = 126 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,126)
-
5-(25,10,504) (#6406) 5-(24,10,378) (#1441)
5-(24,9,126) (#6405)
-
6-(25,10,126)
- family 10, lambda = 138 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,138)
-
5-(25,10,552) (#6510) 5-(24,10,414) (#1463)
5-(24,9,138) (#6509)
-
6-(25,10,138)
- family 11, lambda = 150 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,150)
-
5-(25,10,600) (#6601) 5-(24,10,450) (#1484)
5-(24,9,150) (#6600)
-
6-(25,10,150)
- family 12, lambda = 162 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,162)
-
5-(25,10,648) (#6683) 5-(24,10,486) (#1506)
5-(24,9,162) (#6682)
-
6-(25,10,162)
- family 13, lambda = 174 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,174)
-
5-(25,10,696) (#6777) 5-(24,10,522) (#1527)
5-(24,9,174) (#6776)
-
6-(25,10,174)
- family 14, lambda = 186 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,186)
-
5-(25,10,744) (#6869) 5-(24,10,558) (#1548)
5-(24,9,186) (#6868)
-
6-(25,10,186)
- family 15, lambda = 198 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,198)
-
10-(30,15,792) 10-(29,15,594)
10-(29,14,198)
-
9-(30,15,2772) 9-(29,15,1980) 9-(28,15,1386)
9-(29,14,792) 9-(28,14,594)
9-(28,13,198)
-
8-(30,15,8712) 8-(29,15,5940) 8-(28,15,3960) 8-(27,15,2574)
8-(29,14,2772) 8-(28,14,1980) 8-(27,14,1386)
8-(28,13,792) 8-(27,13,594)
8-(27,12,198)
-
7-(30,15,25047) 7-(29,15,16335) 7-(28,15,10395) 7-(27,15,6435) 7-(26,15,3861)
7-(29,14,8712) 7-(28,14,5940) 7-(27,14,3960) 7-(26,14,2574)
7-(28,13,2772) 7-(27,13,1980) 7-(26,13,1386)
7-(27,12,792) 7-(26,12,594)
7-(26,11,198)
-
6-(30,15,66792) 6-(29,15,41745) 6-(28,15,25410) 6-(27,15,15015) 6-(26,15,8580) 6-(25,15,4719)
6-(29,14,25047) 6-(28,14,16335) 6-(27,14,10395) 6-(26,14,6435) 6-(25,14,3861)
6-(28,13,8712) 6-(27,13,5940) 6-(26,13,3960) 6-(25,13,2574)
6-(27,12,2772) 6-(26,12,1980) 6-(25,12,1386)
6-(26,11,792) 6-(25,11,594)
6-(25,10,198)
-
5-(30,15,166980) (#6922) 5-(29,15,100188) 5-(28,15,58443) 5-(27,15,33033) 5-(26,15,18018) 5-(25,15,9438) 5-(24,15,4719)
5-(29,14,66792) (#6921) 5-(28,14,41745) (#4408) 5-(27,14,25410) 5-(26,14,15015) 5-(25,14,8580) 5-(24,14,4719)
5-(28,13,25047) (#6920) 5-(27,13,16335) (#4407) 5-(26,13,10395) (#4405) 5-(25,13,6435) 5-(24,13,3861)
5-(27,12,8712) (#6919) 5-(26,12,5940) (#4406) 5-(25,12,3960) (#4404) 5-(24,12,2574) (#4403)
5-(26,11,2772) (#6918) 5-(25,11,1980) (#1602) 5-(24,11,1386) (#1601)
5-(25,10,792) (#6917) 5-(24,10,594) (#1564)
5-(24,9,198) (#6916)
-
11-(30,15,198)
- family 16, lambda = 210 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,210)
-
5-(25,10,840) (#6932) 5-(24,10,630) (#1566)
5-(24,9,210) (#6931)
-
6-(25,10,210)
- family 17, lambda = 222 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,222)
-
7-(27,12,888) 7-(26,12,666)
7-(26,11,222)
-
6-(27,12,3108) 6-(26,12,2220) 6-(25,12,1554)
6-(26,11,888) 6-(25,11,666)
6-(25,10,222)
-
5-(27,12,9768) 5-(26,12,6660) 5-(25,12,4440) 5-(24,12,2886) (#4423)
5-(26,11,3108) 5-(25,11,2220) 5-(24,11,1554)
5-(25,10,888) (#6938) 5-(24,10,666) (#1568)
5-(24,9,222) (#6937)
-
8-(27,12,222)
- family 18, lambda = 234 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,234)
-
5-(25,10,936) (#6944) 5-(24,10,702) (#1570)
5-(24,9,234) (#6943)
-
6-(25,10,234)
- family 19, lambda = 246 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,246)
-
10-(30,15,984) 10-(29,15,738)
10-(29,14,246)
-
9-(30,15,3444) 9-(29,15,2460) 9-(28,15,1722)
9-(29,14,984) 9-(28,14,738)
9-(28,13,246)
-
8-(30,15,10824) 8-(29,15,7380) 8-(28,15,4920) 8-(27,15,3198)
8-(29,14,3444) 8-(28,14,2460) 8-(27,14,1722)
8-(28,13,984) 8-(27,13,738)
8-(27,12,246)
-
7-(30,15,31119) 7-(29,15,20295) 7-(28,15,12915) 7-(27,15,7995) 7-(26,15,4797)
7-(29,14,10824) 7-(28,14,7380) 7-(27,14,4920) 7-(26,14,3198)
7-(28,13,3444) 7-(27,13,2460) 7-(26,13,1722)
7-(27,12,984) 7-(26,12,738)
7-(26,11,246)
-
6-(30,15,82984) 6-(29,15,51865) 6-(28,15,31570) 6-(27,15,18655) 6-(26,15,10660) 6-(25,15,5863)
6-(29,14,31119) 6-(28,14,20295) 6-(27,14,12915) 6-(26,14,7995) 6-(25,14,4797)
6-(28,13,10824) 6-(27,13,7380) 6-(26,13,4920) 6-(25,13,3198)
6-(27,12,3444) 6-(26,12,2460) 6-(25,12,1722)
6-(26,11,984) 6-(25,11,738)
6-(25,10,246)
-
5-(30,15,207460) (#6957) 5-(29,15,124476) 5-(28,15,72611) 5-(27,15,41041) 5-(26,15,22386) 5-(25,15,11726) 5-(24,15,5863)
5-(29,14,82984) (#6956) 5-(28,14,51865) (#4444) 5-(27,14,31570) 5-(26,14,18655) 5-(25,14,10660) 5-(24,14,5863)
5-(28,13,31119) (#6955) 5-(27,13,20295) (#4443) 5-(26,13,12915) (#4441) 5-(25,13,7995) 5-(24,13,4797)
5-(27,12,10824) (#6954) 5-(26,12,7380) (#4442) 5-(25,12,4920) (#4440) 5-(24,12,3198) (#4439)
5-(26,11,3444) (#6953) 5-(25,11,2460) (#1604) 5-(24,11,1722) (#1603)
5-(25,10,984) (#6952) 5-(24,10,738) (#1573)
5-(24,9,246) (#6951)
-
11-(30,15,246)
- family 20, lambda = 258 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,258)
-
5-(25,10,1032) (#6963) 5-(24,10,774) (#1575)
5-(24,9,258) (#6962)
-
6-(25,10,258)
- family 21, lambda = 270 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,270)
-
5-(25,10,1080) (#6980) 5-(24,10,810) (#1577)
5-(24,9,270) (#6979)
-
6-(25,10,270)
- family 22, lambda = 282 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,282)
-
5-(25,10,1128) (#6986) 5-(24,10,846) (#1579)
5-(24,9,282) (#6985)
-
6-(25,10,282)
- family 23, lambda = 294 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,294)
-
5-(25,10,1176) (#6992) 5-(24,10,882) (#1581)
5-(24,9,294) (#6991)
-
6-(25,10,294)
- family 24, lambda = 306 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,306)
-
5-(25,10,1224) (#6998) 5-(24,10,918) (#1584)
5-(24,9,306) (#6997)
-
6-(25,10,306)
- family 25, lambda = 318 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,318)
-
5-(25,10,1272) (#7015) 5-(24,10,954) (#1586)
5-(24,9,318) (#7014)
-
6-(25,10,318)
- family 26, lambda = 330 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,330)
-
10-(30,15,1320) 10-(29,15,990)
10-(29,14,330)
-
9-(30,15,4620) 9-(29,15,3300) 9-(28,15,2310)
9-(29,14,1320) 9-(28,14,990)
9-(28,13,330)
-
8-(30,15,14520) 8-(29,15,9900) 8-(28,15,6600) 8-(27,15,4290)
8-(29,14,4620) 8-(28,14,3300) 8-(27,14,2310)
8-(28,13,1320) 8-(27,13,990)
8-(27,12,330)
-
7-(30,15,41745) 7-(29,15,27225) 7-(28,15,17325) 7-(27,15,10725) 7-(26,15,6435)
7-(29,14,14520) 7-(28,14,9900) 7-(27,14,6600) 7-(26,14,4290)
7-(28,13,4620) 7-(27,13,3300) 7-(26,13,2310)
7-(27,12,1320) 7-(26,12,990)
7-(26,11,330)
-
6-(30,15,111320) 6-(29,15,69575) 6-(28,15,42350) 6-(27,15,25025) 6-(26,15,14300) 6-(25,15,7865)
6-(29,14,41745) 6-(28,14,27225) 6-(27,14,17325) 6-(26,14,10725) 6-(25,14,6435)
6-(28,13,14520) 6-(27,13,9900) 6-(26,13,6600) 6-(25,13,4290)
6-(27,12,4620) 6-(26,12,3300) 6-(25,12,2310)
6-(26,11,1320) 6-(25,11,990)
6-(25,10,330)
-
5-(30,15,278300) (#7026) 5-(29,15,166980) 5-(28,15,97405) 5-(27,15,55055) 5-(26,15,30030) 5-(25,15,15730) 5-(24,15,7865)
5-(29,14,111320) (#7025) 5-(28,14,69575) (#4513) 5-(27,14,42350) 5-(26,14,25025) 5-(25,14,14300) 5-(24,14,7865)
5-(28,13,41745) (#7024) 5-(27,13,27225) (#4512) 5-(26,13,17325) (#4510) 5-(25,13,10725) 5-(24,13,6435)
5-(27,12,14520) (#7023) 5-(26,12,9900) (#4511) 5-(25,12,6600) (#4509) 5-(24,12,4290) (#4508)
5-(26,11,4620) (#7022) 5-(25,11,3300) (#1610) 5-(24,11,2310) (#1609)
5-(25,10,1320) (#7021) 5-(24,10,990) (#1588)
5-(24,9,330) (#7020)
-
11-(30,15,330)
- family 27, lambda = 354 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,354)
-
7-(27,12,1416) 7-(26,12,1062)
7-(26,11,354)
-
6-(27,12,4956) 6-(26,12,3540) 6-(25,12,2478)
6-(26,11,1416) 6-(25,11,1062)
6-(25,10,354)
-
5-(27,12,15576) 5-(26,12,10620) 5-(25,12,7080) 5-(24,12,4602) (#4528)
5-(26,11,4956) 5-(25,11,3540) 5-(24,11,2478)
5-(25,10,1416) (#7043) 5-(24,10,1062) (#1278)
5-(24,9,354) (#7042)
-
8-(27,12,354)
- family 28, lambda = 366 containing 24 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,366)
-
10-(30,15,1464) 10-(29,15,1098)
10-(29,14,366)
-
9-(30,15,5124) 9-(29,15,3660) 9-(28,15,2562)
9-(29,14,1464) 9-(28,14,1098)
9-(28,13,366)
-
8-(30,15,16104) 8-(29,15,10980) 8-(28,15,7320) 8-(27,15,4758)
8-(29,14,5124) 8-(28,14,3660) 8-(27,14,2562)
8-(28,13,1464) 8-(27,13,1098)
8-(27,12,366)
-
7-(30,15,46299) 7-(29,15,30195) 7-(28,15,19215) 7-(27,15,11895) 7-(26,15,7137)
7-(29,14,16104) 7-(28,14,10980) (#15010) 7-(27,14,7320) 7-(26,14,4758)
7-(28,13,5124) 7-(27,13,3660) (#15006) 7-(26,13,2562)
7-(27,12,1464) 7-(26,12,1098)
7-(26,11,366)
-
6-(30,15,123464) 6-(29,15,77165) 6-(28,15,46970) 6-(27,15,27755) 6-(26,15,15860) 6-(25,15,8723)
6-(29,14,46299) 6-(28,14,30195) (#15017) 6-(27,14,19215) (#15027) 6-(26,14,11895) 6-(25,14,7137)
6-(28,13,16104) 6-(27,13,10980) (#15007) 6-(26,13,7320) (#15009) 6-(25,13,4758)
6-(27,12,5124) 6-(26,12,3660) (#15008) 6-(25,12,2562)
6-(26,11,1464) 6-(25,11,1098)
6-(25,10,366)
-
5-(30,15,308660) (#15041) 5-(29,15,185196) 5-(28,15,108031) 5-(27,15,61061) 5-(26,15,33306) 5-(25,15,17446) 5-(24,15,8723)
5-(29,14,123464) (#15040) 5-(28,14,77165) (#15031) 5-(27,14,46970) (#15032) 5-(26,14,27755) (#15036) 5-(25,14,15860) 5-(24,14,8723)
5-(28,13,46299) (#15039) 5-(27,13,30195) (#15014) 5-(26,13,19215) (#15016) 5-(25,13,11895) (#15025) 5-(24,13,7137)
5-(27,12,16104) (#15038) 5-(26,12,10980) (#15015) 5-(25,12,7320) (#15022) 5-(24,12,4758)
5-(26,11,5124) (#15035) 5-(25,11,3660) (#15021) 5-(24,11,2562)
5-(25,10,1464) (#7053) 5-(24,10,1098) (#1281)
5-(24,9,366) (#7052)
-
11-(30,15,366)
- family 29, lambda = 378 containing 26 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,378)
-
10-(30,15,1512) 10-(29,15,1134)
10-(29,14,378)
-
9-(30,15,5292) 9-(29,15,3780) 9-(28,15,2646)
9-(29,14,1512) 9-(28,14,1134)
9-(28,13,378)
-
8-(30,15,16632) 8-(29,15,11340) 8-(28,15,7560) 8-(27,15,4914)
8-(29,14,5292) 8-(28,14,3780) 8-(27,14,2646)
8-(28,13,1512) 8-(27,13,1134)
8-(27,12,378)
-
7-(30,15,47817) 7-(29,15,31185) 7-(28,15,19845) 7-(27,15,12285) 7-(26,15,7371)
7-(29,14,16632) 7-(28,14,11340) (#15046) 7-(27,14,7560) 7-(26,14,4914)
7-(28,13,5292) 7-(27,13,3780) (#15042) 7-(26,13,2646)
7-(27,12,1512) 7-(26,12,1134)
7-(26,11,378)
-
6-(30,15,127512) 6-(29,15,79695) 6-(28,15,48510) 6-(27,15,28665) 6-(26,15,16380) 6-(25,15,9009)
6-(29,14,47817) 6-(28,14,31185) (#15050) 6-(27,14,19845) (#15058) 6-(26,14,12285) 6-(25,14,7371)
6-(28,13,16632) 6-(27,13,11340) (#15043) 6-(26,13,7560) (#15045) 6-(25,13,4914)
6-(27,12,5292) 6-(26,12,3780) (#15044) 6-(25,12,2646)
6-(26,11,1512) 6-(25,11,1134)
6-(25,10,378)
-
5-(30,15,318780) (#7064) 5-(29,15,191268) 5-(28,15,111573) 5-(27,15,63063) 5-(26,15,34398) 5-(25,15,18018) 5-(24,15,9009)
5-(29,14,127512) (#7063) 5-(28,14,79695) (#4549) 5-(27,14,48510) (#15062) 5-(26,14,28665) (#15065) 5-(25,14,16380) 5-(24,14,9009)
5-(28,13,47817) (#7062) 5-(27,13,31185) (#4548) 5-(26,13,19845) (#4546) 5-(25,13,12285) (#15056) 5-(24,13,7371)
5-(27,12,16632) (#7061) 5-(26,12,11340) (#4547) 5-(25,12,7560) (#4545) 5-(24,12,4914) (#4544)
5-(26,11,5292) (#7060) 5-(25,11,3780) (#1612) 5-(24,11,2646) (#1611)
5-(25,10,1512) (#7059) 5-(24,10,1134) (#1283)
5-(24,9,378) (#7058)
-
11-(30,15,378)
- family 30, lambda = 390 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,390)
-
5-(25,10,1560) (#7070) 5-(24,10,1170) (#1285)
5-(24,9,390) (#7069)
-
6-(25,10,390)
- family 31, lambda = 402 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,402)
-
5-(25,10,1608) (#7087) 5-(24,10,1206) (#1287)
5-(24,9,402) (#7086)
-
6-(25,10,402)
- family 32, lambda = 414 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,414)
-
5-(25,10,1656) (#7097) 5-(24,10,1242) (#1289)
5-(24,9,414) (#7096)
-
6-(25,10,414)
- family 33, lambda = 426 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,426)
-
5-(25,10,1704) (#7105) 5-(24,10,1278) (#1292)
5-(24,9,426) (#7104)
-
6-(25,10,426)
- family 34, lambda = 438 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,438)
-
5-(25,10,1752) (#7111) 5-(24,10,1314) (#1294)
5-(24,9,438) (#7110)
-
6-(25,10,438)
- family 35, lambda = 450 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,450)
-
5-(25,10,1800) (#7128) 5-(24,10,1350) (#1296)
5-(24,9,450) (#7127)
-
6-(25,10,450)
- family 36, lambda = 462 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,462)
-
10-(30,15,1848) 10-(29,15,1386)
10-(29,14,462)
-
9-(30,15,6468) 9-(29,15,4620) 9-(28,15,3234)
9-(29,14,1848) 9-(28,14,1386)
9-(28,13,462)
-
8-(30,15,20328) 8-(29,15,13860) 8-(28,15,9240) 8-(27,15,6006)
8-(29,14,6468) 8-(28,14,4620) 8-(27,14,3234)
8-(28,13,1848) 8-(27,13,1386)
8-(27,12,462)
-
7-(30,15,58443) 7-(29,15,38115) 7-(28,15,24255) 7-(27,15,15015) 7-(26,15,9009)
7-(29,14,20328) 7-(28,14,13860) 7-(27,14,9240) 7-(26,14,6006)
7-(28,13,6468) 7-(27,13,4620) 7-(26,13,3234)
7-(27,12,1848) 7-(26,12,1386)
7-(26,11,462)
-
6-(30,15,155848) 6-(29,15,97405) 6-(28,15,59290) 6-(27,15,35035) 6-(26,15,20020) 6-(25,15,11011)
6-(29,14,58443) 6-(28,14,38115) 6-(27,14,24255) 6-(26,14,15015) 6-(25,14,9009)
6-(28,13,20328) 6-(27,13,13860) 6-(26,13,9240) 6-(25,13,6006)
6-(27,12,6468) 6-(26,12,4620) 6-(25,12,3234)
6-(26,11,1848) 6-(25,11,1386)
6-(25,10,462)
-
5-(30,15,389620) (#7135) 5-(29,15,233772) 5-(28,15,136367) 5-(27,15,77077) 5-(26,15,42042) 5-(25,15,22022) 5-(24,15,11011)
5-(29,14,155848) (#7134) 5-(28,14,97405) (#4619) 5-(27,14,59290) 5-(26,14,35035) 5-(25,14,20020) 5-(24,14,11011)
5-(28,13,58443) (#7133) 5-(27,13,38115) (#4618) 5-(26,13,24255) (#4616) 5-(25,13,15015) 5-(24,13,9009)
5-(27,12,20328) (#7132) 5-(26,12,13860) (#4617) 5-(25,12,9240) (#4615) 5-(24,12,6006) (#4614)
5-(26,11,6468) (#7131) 5-(25,11,4620) (#1618) 5-(24,11,3234) (#1617)
5-(25,10,1848) (#7130) 5-(24,10,1386) (#1297)
5-(24,9,462) (#7129)
-
11-(30,15,462)
- family 37, lambda = 474 containing 18 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,474)
-
10-(30,15,1896) 10-(29,15,1422)
10-(29,14,474)
-
9-(30,15,6636) 9-(29,15,4740) 9-(28,15,3318)
9-(29,14,1896) 9-(28,14,1422)
9-(28,13,474)
-
8-(30,15,20856) 8-(29,15,14220) 8-(28,15,9480) 8-(27,15,6162)
8-(29,14,6636) 8-(28,14,4740) 8-(27,14,3318)
8-(28,13,1896) 8-(27,13,1422)
8-(27,12,474)
-
7-(30,15,59961) 7-(29,15,39105) 7-(28,15,24885) 7-(27,15,15405) 7-(26,15,9243)
7-(29,14,20856) 7-(28,14,14220) 7-(27,14,9480) 7-(26,14,6162)
7-(28,13,6636) 7-(27,13,4740) 7-(26,13,3318)
7-(27,12,1896) (#14536) 7-(26,12,1422)
7-(26,11,474)
-
6-(30,15,159896) 6-(29,15,99935) 6-(28,15,60830) 6-(27,15,35945) 6-(26,15,20540) 6-(25,15,11297)
6-(29,14,59961) 6-(28,14,39105) 6-(27,14,24885) 6-(26,14,15405) 6-(25,14,9243)
6-(28,13,20856) 6-(27,13,14220) 6-(26,13,9480) 6-(25,13,6162)
6-(27,12,6636) (#10902) 6-(26,12,4740) (#14538) 6-(25,12,3318)
6-(26,11,1896) (#14537) 6-(25,11,1422)
6-(25,10,474)
-
5-(30,15,399740) (#14557) 5-(29,15,239844) 5-(28,15,139909) 5-(27,15,79079) 5-(26,15,43134) 5-(25,15,22594) 5-(24,15,11297)
5-(29,14,159896) (#14555) 5-(28,14,99935) (#14551) 5-(27,14,60830) 5-(26,14,35945) 5-(25,14,20540) 5-(24,14,11297)
5-(28,13,59961) (#14552) 5-(27,13,39105) (#14549) 5-(26,13,24885) (#14547) 5-(25,13,15405) 5-(24,13,9243)
5-(27,12,20856) (#10903) 5-(26,12,14220) (#10905) 5-(25,12,9480) (#14545) 5-(24,12,6162)
5-(26,11,6636) (#10904) 5-(25,11,4740) (#14542) 5-(24,11,3318)
5-(25,10,1896) (#7141) 5-(24,10,1422) (#1299)
5-(24,9,474) (#7140)
-
11-(30,15,474)
- family 38, lambda = 486 containing 19 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,486)
-
10-(30,15,1944) 10-(29,15,1458)
10-(29,14,486)
-
9-(30,15,6804) 9-(29,15,4860) 9-(28,15,3402)
9-(29,14,1944) 9-(28,14,1458)
9-(28,13,486)
-
8-(30,15,21384) 8-(29,15,14580) 8-(28,15,9720) 8-(27,15,6318)
8-(29,14,6804) 8-(28,14,4860) 8-(27,14,3402)
8-(28,13,1944) 8-(27,13,1458)
8-(27,12,486)
-
7-(30,15,61479) 7-(29,15,40095) 7-(28,15,25515) 7-(27,15,15795) 7-(26,15,9477)
7-(29,14,21384) 7-(28,14,14580) 7-(27,14,9720) 7-(26,14,6318)
7-(28,13,6804) 7-(27,13,4860) 7-(26,13,3402)
7-(27,12,1944) (#14559) 7-(26,12,1458)
7-(26,11,486)
-
6-(30,15,163944) 6-(29,15,102465) 6-(28,15,62370) 6-(27,15,36855) 6-(26,15,21060) 6-(25,15,11583)
6-(29,14,61479) 6-(28,14,40095) 6-(27,14,25515) 6-(26,14,15795) 6-(25,14,9477)
6-(28,13,21384) 6-(27,13,14580) 6-(26,13,9720) 6-(25,13,6318)
6-(27,12,6804) (#10909) 6-(26,12,4860) (#14561) 6-(25,12,3402)
6-(26,11,1944) (#14560) 6-(25,11,1458)
6-(25,10,486)
-
5-(30,15,409860) (#14580) 5-(29,15,245916) 5-(28,15,143451) 5-(27,15,81081) 5-(26,15,44226) 5-(25,15,23166) 5-(24,15,11583)
5-(29,14,163944) (#14578) 5-(28,14,102465) (#14574) 5-(27,14,62370) 5-(26,14,36855) 5-(25,14,21060) 5-(24,14,11583)
5-(28,13,61479) (#14575) 5-(27,13,40095) (#14572) 5-(26,13,25515) (#14570) 5-(25,13,15795) 5-(24,13,9477)
5-(27,12,21384) (#10910) 5-(26,12,14580) (#10912) 5-(25,12,9720) (#14568) 5-(24,12,6318) (#4638)
5-(26,11,6804) (#10911) 5-(25,11,4860) (#14565) 5-(24,11,3402)
5-(25,10,1944) (#7162) 5-(24,10,1458) (#1302)
5-(24,9,486) (#7161)
-
11-(30,15,486)
- family 39, lambda = 498 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,498)
-
5-(25,10,1992) (#7168) 5-(24,10,1494) (#1304)
5-(24,9,498) (#7167)
-
6-(25,10,498)
- family 40, lambda = 510 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,510)
-
10-(30,15,2040) 10-(29,15,1530)
10-(29,14,510)
-
9-(30,15,7140) 9-(29,15,5100) 9-(28,15,3570)
9-(29,14,2040) 9-(28,14,1530)
9-(28,13,510)
-
8-(30,15,22440) 8-(29,15,15300) 8-(28,15,10200) 8-(27,15,6630)
8-(29,14,7140) 8-(28,14,5100) 8-(27,14,3570)
8-(28,13,2040) 8-(27,13,1530)
8-(27,12,510)
-
7-(30,15,64515) 7-(29,15,42075) 7-(28,15,26775) 7-(27,15,16575) 7-(26,15,9945)
7-(29,14,22440) 7-(28,14,15300) 7-(27,14,10200) 7-(26,14,6630)
7-(28,13,7140) 7-(27,13,5100) 7-(26,13,3570)
7-(27,12,2040) 7-(26,12,1530)
7-(26,11,510)
-
6-(30,15,172040) 6-(29,15,107525) 6-(28,15,65450) 6-(27,15,38675) 6-(26,15,22100) 6-(25,15,12155)
6-(29,14,64515) 6-(28,14,42075) 6-(27,14,26775) 6-(26,14,16575) 6-(25,14,9945)
6-(28,13,22440) 6-(27,13,15300) 6-(26,13,10200) 6-(25,13,6630)
6-(27,12,7140) 6-(26,12,5100) 6-(25,12,3570)
6-(26,11,2040) 6-(25,11,1530)
6-(25,10,510)
-
5-(30,15,430100) (#7179) 5-(29,15,258060) 5-(28,15,150535) 5-(27,15,85085) 5-(26,15,46410) 5-(25,15,24310) 5-(24,15,12155)
5-(29,14,172040) (#7178) 5-(28,14,107525) (#4658) 5-(27,14,65450) 5-(26,14,38675) 5-(25,14,22100) 5-(24,14,12155)
5-(28,13,64515) (#7177) 5-(27,13,42075) (#4657) 5-(26,13,26775) (#4655) 5-(25,13,16575) 5-(24,13,9945)
5-(27,12,22440) (#7176) 5-(26,12,15300) (#4656) 5-(25,12,10200) (#4654) 5-(24,12,6630) (#4653)
5-(26,11,7140) (#7175) 5-(25,11,5100) (#1622) 5-(24,11,3570) (#1621)
5-(25,10,2040) (#7174) 5-(24,10,1530) (#1306)
5-(24,9,510) (#7173)
-
11-(30,15,510)
- family 41, lambda = 522 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,522)
-
5-(25,10,2088) (#7185) 5-(24,10,1566) (#1308)
5-(24,9,522) (#7184)
-
6-(25,10,522)
- family 42, lambda = 534 containing 3 designs:
minpath=(0, 5, 0) minimal_t=5-
6-(25,10,534)
-
5-(25,10,2136) (#7202) 5-(24,10,1602) (#1310)
5-(24,9,534) (#7201)
-
6-(25,10,534)
- family 43, lambda = 546 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,546)
-
7-(27,12,2184) 7-(26,12,1638)
7-(26,11,546)
-
6-(27,12,7644) 6-(26,12,5460) 6-(25,12,3822)
6-(26,11,2184) 6-(25,11,1638)
6-(25,10,546)
-
5-(27,12,24024) 5-(26,12,16380) 5-(25,12,10920) 5-(24,12,7098) (#4691)
5-(26,11,7644) 5-(25,11,5460) 5-(24,11,3822)
5-(25,10,2184) (#7210) 5-(24,10,1638) (#1313)
5-(24,9,546) (#7209)
-
8-(27,12,546)
- family 44, lambda = 558 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,558)
-
7-(27,12,2232) 7-(26,12,1674)
7-(26,11,558)
-
6-(27,12,7812) 6-(26,12,5580) 6-(25,12,3906)
6-(26,11,2232) 6-(25,11,1674)
6-(25,10,558)
-
5-(27,12,24552) 5-(26,12,16740) 5-(25,12,11160) 5-(24,12,7254) (#4716)
5-(26,11,7812) 5-(25,11,5580) 5-(24,11,3906)
5-(25,10,2232) (#7216) 5-(24,10,1674) (#1315)
5-(24,9,558) (#7215)
-
8-(27,12,558)
- family 45, lambda = 582 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,582)
-
7-(27,12,2328) 7-(26,12,1746)
7-(26,11,582)
-
6-(27,12,8148) 6-(26,12,5820) 6-(25,12,4074)
6-(26,11,2328) 6-(25,11,1746)
6-(25,10,582)
-
5-(27,12,25608) 5-(26,12,17460) 5-(25,12,11640) 5-(24,12,7566) (#4774)
5-(26,11,8148) 5-(25,11,5820) 5-(24,11,4074)
5-(25,10,2328) (#7239) 5-(24,10,1746) (#1319)
5-(24,9,582) (#7238)
-
8-(27,12,582)
- family 46, lambda = 594 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,594)
-
10-(30,15,2376) 10-(29,15,1782)
10-(29,14,594)
-
9-(30,15,8316) 9-(29,15,5940) 9-(28,15,4158)
9-(29,14,2376) 9-(28,14,1782)
9-(28,13,594)
-
8-(30,15,26136) 8-(29,15,17820) 8-(28,15,11880) 8-(27,15,7722)
8-(29,14,8316) 8-(28,14,5940) 8-(27,14,4158)
8-(28,13,2376) 8-(27,13,1782)
8-(27,12,594)
-
7-(30,15,75141) 7-(29,15,49005) 7-(28,15,31185) 7-(27,15,19305) 7-(26,15,11583)
7-(29,14,26136) 7-(28,14,17820) 7-(27,14,11880) 7-(26,14,7722)
7-(28,13,8316) 7-(27,13,5940) 7-(26,13,4158)
7-(27,12,2376) 7-(26,12,1782)
7-(26,11,594)
-
6-(30,15,200376) 6-(29,15,125235) 6-(28,15,76230) 6-(27,15,45045) 6-(26,15,25740) 6-(25,15,14157)
6-(29,14,75141) 6-(28,14,49005) 6-(27,14,31185) 6-(26,14,19305) 6-(25,14,11583)
6-(28,13,26136) 6-(27,13,17820) 6-(26,13,11880) 6-(25,13,7722)
6-(27,12,8316) 6-(26,12,5940) 6-(25,12,4158)
6-(26,11,2376) 6-(25,11,1782)
6-(25,10,594)
-
5-(30,15,500940) (#7250) 5-(29,15,300564) 5-(28,15,175329) 5-(27,15,99099) 5-(26,15,54054) 5-(25,15,28314) 5-(24,15,14157)
5-(29,14,200376) (#7249) 5-(28,14,125235) (#4804) 5-(27,14,76230) 5-(26,14,45045) 5-(25,14,25740) 5-(24,14,14157)
5-(28,13,75141) (#7248) 5-(27,13,49005) (#4803) 5-(26,13,31185) (#4801) 5-(25,13,19305) 5-(24,13,11583)
5-(27,12,26136) (#7247) 5-(26,12,17820) (#4802) 5-(25,12,11880) (#4800) 5-(24,12,7722) (#4799)
5-(26,11,8316) (#7246) 5-(25,11,5940) (#1628) 5-(24,11,4158) (#1627)
5-(25,10,2376) (#7245) 5-(24,10,1782) (#1321)
5-(24,9,594) (#7244)
-
11-(30,15,594)
- family 47, lambda = 606 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,606)
-
7-(27,12,2424) 7-(26,12,1818)
7-(26,11,606)
-
6-(27,12,8484) 6-(26,12,6060) 6-(25,12,4242)
6-(26,11,2424) 6-(25,11,1818)
6-(25,10,606)
-
5-(27,12,26664) 5-(26,12,18180) 5-(25,12,12120) 5-(24,12,7878) (#4829)
5-(26,11,8484) 5-(25,11,6060) 5-(24,11,4242)
5-(25,10,2424) (#7261) 5-(24,10,1818) (#1324)
5-(24,9,606) (#7260)
-
8-(27,12,606)
- family 48, lambda = 618 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,618)
-
7-(27,12,2472) 7-(26,12,1854)
7-(26,11,618)
-
6-(27,12,8652) 6-(26,12,6180) 6-(25,12,4326)
6-(26,11,2472) 6-(25,11,1854)
6-(25,10,618)
-
5-(27,12,27192) 5-(26,12,18540) 5-(25,12,12360) 5-(24,12,8034) (#4855)
5-(26,11,8652) 5-(25,11,6180) 5-(24,11,4326)
5-(25,10,2472) (#7271) 5-(24,10,1854) (#1326)
5-(24,9,618) (#7270)
-
8-(27,12,618)
- family 49, lambda = 630 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,630)
-
7-(27,12,2520) 7-(26,12,1890)
7-(26,11,630)
-
6-(27,12,8820) 6-(26,12,6300) 6-(25,12,4410)
6-(26,11,2520) 6-(25,11,1890)
6-(25,10,630)
-
5-(27,12,27720) 5-(26,12,18900) 5-(25,12,12600) 5-(24,12,8190) (#4881)
5-(26,11,8820) 5-(25,11,6300) 5-(24,11,4410)
5-(25,10,2520) (#7277) 5-(24,10,1890) (#1328)
5-(24,9,630) (#7276)
-
8-(27,12,630)
- family 50, lambda = 642 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,642)
-
10-(30,15,2568) 10-(29,15,1926)
10-(29,14,642)
-
9-(30,15,8988) 9-(29,15,6420) 9-(28,15,4494)
9-(29,14,2568) 9-(28,14,1926)
9-(28,13,642)
-
8-(30,15,28248) 8-(29,15,19260) 8-(28,15,12840) 8-(27,15,8346)
8-(29,14,8988) 8-(28,14,6420) 8-(27,14,4494)
8-(28,13,2568) 8-(27,13,1926)
8-(27,12,642)
-
7-(30,15,81213) 7-(29,15,52965) 7-(28,15,33705) 7-(27,15,20865) 7-(26,15,12519)
7-(29,14,28248) 7-(28,14,19260) 7-(27,14,12840) 7-(26,14,8346)
7-(28,13,8988) 7-(27,13,6420) 7-(26,13,4494)
7-(27,12,2568) 7-(26,12,1926)
7-(26,11,642)
-
6-(30,15,216568) 6-(29,15,135355) 6-(28,15,82390) 6-(27,15,48685) 6-(26,15,27820) 6-(25,15,15301)
6-(29,14,81213) 6-(28,14,52965) 6-(27,14,33705) 6-(26,14,20865) 6-(25,14,12519)
6-(28,13,28248) 6-(27,13,19260) 6-(26,13,12840) 6-(25,13,8346)
6-(27,12,8988) 6-(26,12,6420) 6-(25,12,4494)
6-(26,11,2568) 6-(25,11,1926)
6-(25,10,642)
-
5-(30,15,541420) (#7288) 5-(29,15,324852) 5-(28,15,189497) 5-(27,15,107107) 5-(26,15,58422) 5-(25,15,30602) 5-(24,15,15301)
5-(29,14,216568) (#7287) 5-(28,14,135355) (#4911) 5-(27,14,82390) 5-(26,14,48685) 5-(25,14,27820) 5-(24,14,15301)
5-(28,13,81213) (#7286) 5-(27,13,52965) (#4910) 5-(26,13,33705) (#4908) 5-(25,13,20865) 5-(24,13,12519)
5-(27,12,28248) (#7285) 5-(26,12,19260) (#4909) 5-(25,12,12840) (#4907) 5-(24,12,8346) (#4906)
5-(26,11,8988) (#7284) 5-(25,11,6420) (#1630) 5-(24,11,4494) (#1629)
5-(25,10,2568) (#7283) 5-(24,10,1926) (#1330)
5-(24,9,642) (#7282)
-
11-(30,15,642)
- family 51, lambda = 654 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,654)
-
7-(27,12,2616) 7-(26,12,1962)
7-(26,11,654)
-
6-(27,12,9156) 6-(26,12,6540) 6-(25,12,4578)
6-(26,11,2616) 6-(25,11,1962)
6-(25,10,654)
-
5-(27,12,28776) 5-(26,12,19620) 5-(25,12,13080) 5-(24,12,8502) (#4938)
5-(26,11,9156) 5-(25,11,6540) 5-(24,11,4578)
5-(25,10,2616) (#7294) 5-(24,10,1962) (#1332)
5-(24,9,654) (#7293)
-
8-(27,12,654)
- family 52, lambda = 666 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,666)
-
7-(27,12,2664) 7-(26,12,1998)
7-(26,11,666)
-
6-(27,12,9324) 6-(26,12,6660) 6-(25,12,4662)
6-(26,11,2664) 6-(25,11,1998)
6-(25,10,666)
-
5-(27,12,29304) 5-(26,12,19980) 5-(25,12,13320) 5-(24,12,8658) (#4974)
5-(26,11,9324) 5-(25,11,6660) 5-(24,11,4662)
5-(25,10,2664) (#7318) 5-(24,10,1998) (#1335)
5-(24,9,666) (#7317)
-
8-(27,12,666)
- family 53, lambda = 678 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,678)
-
7-(27,12,2712) 7-(26,12,2034)
7-(26,11,678)
-
6-(27,12,9492) 6-(26,12,6780) 6-(25,12,4746)
6-(26,11,2712) 6-(25,11,2034)
6-(25,10,678)
-
5-(27,12,29832) 5-(26,12,20340) 5-(25,12,13560) 5-(24,12,8814) (#5000)
5-(26,11,9492) 5-(25,11,6780) 5-(24,11,4746)
5-(25,10,2712) (#7324) 5-(24,10,2034) (#1337)
5-(24,9,678) (#7323)
-
8-(27,12,678)
- family 54, lambda = 690 containing 14 designs:
minpath=(0, 1, 0) minimal_t=5-
10-(29,14,690)
-
9-(29,14,2760) 9-(28,14,2070)
9-(28,13,690)
-
8-(29,14,9660) 8-(28,14,6900) 8-(27,14,4830)
8-(28,13,2760) 8-(27,13,2070)
8-(27,12,690)
-
7-(29,14,30360) 7-(28,14,20700) (#10961) 7-(27,14,13800) 7-(26,14,8970)
7-(28,13,9660) 7-(27,13,6900) 7-(26,13,4830)
7-(27,12,2760) 7-(26,12,2070)
7-(26,11,690)
-
6-(29,14,87285) 6-(28,14,56925) (#10960) 6-(27,14,36225) (#10969) 6-(26,14,22425) 6-(25,14,13455)
6-(28,13,30360) 6-(27,13,20700) (#10956) 6-(26,13,13800) 6-(25,13,8970)
6-(27,12,9660) 6-(26,12,6900) 6-(25,12,4830)
6-(26,11,2760) 6-(25,11,2070)
6-(25,10,690)
-
5-(29,14,232760) 5-(28,14,145475) (#10965) 5-(27,14,88550) (#10966) 5-(26,14,52325) (#10973) 5-(25,14,29900) 5-(24,14,16445)
5-(28,13,87285) 5-(27,13,56925) (#10957) 5-(26,13,36225) (#10959) 5-(25,13,22425) 5-(24,13,13455)
5-(27,12,30360) 5-(26,12,20700) (#10958) 5-(25,12,13800) 5-(24,12,8970) (#5026)
5-(26,11,9660) 5-(25,11,6900) 5-(24,11,4830)
5-(25,10,2760) (#7341) 5-(24,10,2070) (#1338)
5-(24,9,690) (#7340)
-
10-(29,14,690)
- family 55, lambda = 702 containing 14 designs:
minpath=(0, 1, 0) minimal_t=5-
10-(29,14,702)
-
9-(29,14,2808) 9-(28,14,2106)
9-(28,13,702)
-
8-(29,14,9828) 8-(28,14,7020) 8-(27,14,4914)
8-(28,13,2808) 8-(27,13,2106)
8-(27,12,702)
-
7-(29,14,30888) 7-(28,14,21060) (#10981) 7-(27,14,14040) 7-(26,14,9126)
7-(28,13,9828) 7-(27,13,7020) 7-(26,13,4914)
7-(27,12,2808) 7-(26,12,2106)
7-(26,11,702)
-
6-(29,14,88803) 6-(28,14,57915) (#10980) 6-(27,14,36855) (#10989) 6-(26,14,22815) 6-(25,14,13689)
6-(28,13,30888) 6-(27,13,21060) (#10976) 6-(26,13,14040) 6-(25,13,9126)
6-(27,12,9828) 6-(26,12,7020) 6-(25,12,4914)
6-(26,11,2808) 6-(25,11,2106)
6-(25,10,702)
-
5-(29,14,236808) 5-(28,14,148005) (#10985) 5-(27,14,90090) (#10986) 5-(26,14,53235) (#10993) 5-(25,14,30420) 5-(24,14,16731)
5-(28,13,88803) 5-(27,13,57915) (#10977) 5-(26,13,36855) (#10979) 5-(25,13,22815) 5-(24,13,13689)
5-(27,12,30888) 5-(26,12,21060) (#10978) 5-(25,12,14040) 5-(24,12,9126) (#5053)
5-(26,11,9828) 5-(25,11,7020) 5-(24,11,4914)
5-(25,10,2808) (#7347) 5-(24,10,2106) (#1340)
5-(24,9,702) (#7346)
-
10-(29,14,702)
- family 56, lambda = 714 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,714)
-
7-(27,12,2856) 7-(26,12,2142)
7-(26,11,714)
-
6-(27,12,9996) 6-(26,12,7140) 6-(25,12,4998)
6-(26,11,2856) 6-(25,11,2142)
6-(25,10,714)
-
5-(27,12,31416) 5-(26,12,21420) 5-(25,12,14280) 5-(24,12,9282) (#5085)
5-(26,11,9996) 5-(25,11,7140) 5-(24,11,4998)
5-(25,10,2856) (#7364) 5-(24,10,2142) (#1342)
5-(24,9,714) (#7363)
-
8-(27,12,714)
- family 57, lambda = 726 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,726)
-
10-(30,15,2904) 10-(29,15,2178)
10-(29,14,726)
-
9-(30,15,10164) 9-(29,15,7260) 9-(28,15,5082)
9-(29,14,2904) 9-(28,14,2178)
9-(28,13,726)
-
8-(30,15,31944) 8-(29,15,21780) 8-(28,15,14520) 8-(27,15,9438)
8-(29,14,10164) 8-(28,14,7260) 8-(27,14,5082)
8-(28,13,2904) 8-(27,13,2178)
8-(27,12,726)
-
7-(30,15,91839) 7-(29,15,59895) 7-(28,15,38115) 7-(27,15,23595) 7-(26,15,14157)
7-(29,14,31944) 7-(28,14,21780) 7-(27,14,14520) 7-(26,14,9438)
7-(28,13,10164) 7-(27,13,7260) 7-(26,13,5082)
7-(27,12,2904) 7-(26,12,2178)
7-(26,11,726)
-
6-(30,15,244904) 6-(29,15,153065) 6-(28,15,93170) 6-(27,15,55055) 6-(26,15,31460) 6-(25,15,17303)
6-(29,14,91839) 6-(28,14,59895) 6-(27,14,38115) 6-(26,14,23595) 6-(25,14,14157)
6-(28,13,31944) 6-(27,13,21780) 6-(26,13,14520) 6-(25,13,9438)
6-(27,12,10164) 6-(26,12,7260) 6-(25,12,5082)
6-(26,11,2904) 6-(25,11,2178)
6-(25,10,726)
-
5-(30,15,612260) (#7379) 5-(29,15,367356) 5-(28,15,214291) 5-(27,15,121121) 5-(26,15,66066) 5-(25,15,34606) 5-(24,15,17303)
5-(29,14,244904) (#7378) 5-(28,14,153065) (#5115) 5-(27,14,93170) 5-(26,14,55055) 5-(25,14,31460) 5-(24,14,17303)
5-(28,13,91839) (#7377) 5-(27,13,59895) (#5114) 5-(26,13,38115) (#5112) 5-(25,13,23595) 5-(24,13,14157)
5-(27,12,31944) (#7376) 5-(26,12,21780) (#5113) 5-(25,12,14520) (#5111) 5-(24,12,9438) (#5110)
5-(26,11,10164) (#7375) 5-(25,11,7260) (#1638) 5-(24,11,5082) (#1637)
5-(25,10,2904) (#7374) 5-(24,10,2178) (#1345)
5-(24,9,726) (#7373)
-
11-(30,15,726)
- family 58, lambda = 738 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,738)
-
7-(27,12,2952) 7-(26,12,2214)
7-(26,11,738)
-
6-(27,12,10332) 6-(26,12,7380) 6-(25,12,5166)
6-(26,11,2952) 6-(25,11,2214)
6-(25,10,738)
-
5-(27,12,32472) 5-(26,12,22140) 5-(25,12,14760) 5-(24,12,9594) (#5141)
5-(26,11,10332) 5-(25,11,7380) 5-(24,11,5166)
5-(25,10,2952) (#7385) 5-(24,10,2214) (#1347)
5-(24,9,738) (#7384)
-
8-(27,12,738)
- family 59, lambda = 750 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,750)
-
7-(27,12,3000) 7-(26,12,2250)
7-(26,11,750)
-
6-(27,12,10500) 6-(26,12,7500) 6-(25,12,5250)
6-(26,11,3000) 6-(25,11,2250)
6-(25,10,750)
-
5-(27,12,33000) 5-(26,12,22500) 5-(25,12,15000) 5-(24,12,9750) (#5169)
5-(26,11,10500) 5-(25,11,7500) 5-(24,11,5250)
5-(25,10,3000) (#7391) 5-(24,10,2250) (#1349)
5-(24,9,750) (#7390)
-
8-(27,12,750)
- family 60, lambda = 762 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,762)
-
7-(27,12,3048) 7-(26,12,2286)
7-(26,11,762)
-
6-(27,12,10668) 6-(26,12,7620) 6-(25,12,5334)
6-(26,11,3048) 6-(25,11,2286)
6-(25,10,762)
-
5-(27,12,33528) 5-(26,12,22860) 5-(25,12,15240) 5-(24,12,9906) (#5196)
5-(26,11,10668) 5-(25,11,7620) 5-(24,11,5334)
5-(25,10,3048) (#7397) 5-(24,10,2286) (#1351)
5-(24,9,762) (#7396)
-
8-(27,12,762)
- family 61, lambda = 774 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,774)
-
10-(30,15,3096) 10-(29,15,2322)
10-(29,14,774)
-
9-(30,15,10836) 9-(29,15,7740) 9-(28,15,5418)
9-(29,14,3096) 9-(28,14,2322)
9-(28,13,774)
-
8-(30,15,34056) 8-(29,15,23220) 8-(28,15,15480) 8-(27,15,10062)
8-(29,14,10836) 8-(28,14,7740) 8-(27,14,5418)
8-(28,13,3096) 8-(27,13,2322)
8-(27,12,774)
-
7-(30,15,97911) 7-(29,15,63855) 7-(28,15,40635) 7-(27,15,25155) 7-(26,15,15093)
7-(29,14,34056) 7-(28,14,23220) 7-(27,14,15480) 7-(26,14,10062)
7-(28,13,10836) 7-(27,13,7740) 7-(26,13,5418)
7-(27,12,3096) 7-(26,12,2322)
7-(26,11,774)
-
6-(30,15,261096) 6-(29,15,163185) 6-(28,15,99330) 6-(27,15,58695) 6-(26,15,33540) 6-(25,15,18447)
6-(29,14,97911) 6-(28,14,63855) 6-(27,14,40635) 6-(26,14,25155) 6-(25,14,15093)
6-(28,13,34056) 6-(27,13,23220) 6-(26,13,15480) 6-(25,13,10062)
6-(27,12,10836) 6-(26,12,7740) 6-(25,12,5418)
6-(26,11,3096) 6-(25,11,2322)
6-(25,10,774)
-
5-(30,15,652740) (#7408) 5-(29,15,391644) 5-(28,15,228459) 5-(27,15,129129) 5-(26,15,70434) 5-(25,15,36894) 5-(24,15,18447)
5-(29,14,261096) (#7407) 5-(28,14,163185) (#1697) 5-(27,14,99330) 5-(26,14,58695) 5-(25,14,33540) 5-(24,14,18447)
5-(28,13,97911) (#7406) 5-(27,13,63855) (#1696) 5-(26,13,40635) (#1694) 5-(25,13,25155) 5-(24,13,15093)
5-(27,12,34056) (#7405) 5-(26,12,23220) (#1695) 5-(25,12,15480) (#1693) 5-(24,12,10062) (#1692)
5-(26,11,10836) (#7404) 5-(25,11,7740) (#1640) 5-(24,11,5418) (#1639)
5-(25,10,3096) (#7403) 5-(24,10,2322) (#1353)
5-(24,9,774) (#7402)
-
11-(30,15,774)
- family 62, lambda = 786 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,786)
-
7-(27,12,3144) 7-(26,12,2358)
7-(26,11,786)
-
6-(27,12,11004) 6-(26,12,7860) 6-(25,12,5502)
6-(26,11,3144) 6-(25,11,2358)
6-(25,10,786)
-
5-(27,12,34584) 5-(26,12,23580) 5-(25,12,15720) 5-(24,12,10218) (#1724)
5-(26,11,11004) 5-(25,11,7860) 5-(24,11,5502)
5-(25,10,3144) (#7416) 5-(24,10,2358) (#1356)
5-(24,9,786) (#7415)
-
8-(27,12,786)
- family 63, lambda = 810 containing 8 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,810)
-
7-(27,12,3240) 7-(26,12,2430)
7-(26,11,810)
-
6-(27,12,11340) (#10780) 6-(26,12,8100) 6-(25,12,5670)
6-(26,11,3240) 6-(25,11,2430)
6-(25,10,810)
-
5-(27,12,35640) (#10781) 5-(26,12,24300) (#10783) 5-(25,12,16200) 5-(24,12,10530) (#1781)
5-(26,11,11340) (#10782) 5-(25,11,8100) 5-(24,11,5670)
5-(25,10,3240) (#7439) 5-(24,10,2430) (#1360)
5-(24,9,810) (#7438)
-
8-(27,12,810)
- family 64, lambda = 822 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,822)
-
7-(27,12,3288) 7-(26,12,2466)
7-(26,11,822)
-
6-(27,12,11508) 6-(26,12,8220) 6-(25,12,5754)
6-(26,11,3288) 6-(25,11,2466)
6-(25,10,822)
-
5-(27,12,36168) 5-(26,12,24660) 5-(25,12,16440) 5-(24,12,10686) (#1807)
5-(26,11,11508) 5-(25,11,8220) 5-(24,11,5754)
5-(25,10,3288) (#7449) 5-(24,10,2466) (#1362)
5-(24,9,822) (#7448)
-
8-(27,12,822)
- family 65, lambda = 834 containing 14 designs:
minpath=(0, 1, 0) minimal_t=5-
10-(29,14,834)
-
9-(29,14,3336) 9-(28,14,2502)
9-(28,13,834)
-
8-(29,14,11676) 8-(28,14,8340) 8-(27,14,5838)
8-(28,13,3336) 8-(27,13,2502)
8-(27,12,834)
-
7-(29,14,36696) 7-(28,14,25020) (#11041) 7-(27,14,16680) 7-(26,14,10842)
7-(28,13,11676) 7-(27,13,8340) 7-(26,13,5838)
7-(27,12,3336) 7-(26,12,2502)
7-(26,11,834)
-
6-(29,14,105501) 6-(28,14,68805) (#11040) 6-(27,14,43785) (#11049) 6-(26,14,27105) 6-(25,14,16263)
6-(28,13,36696) 6-(27,13,25020) (#11036) 6-(26,13,16680) 6-(25,13,10842)
6-(27,12,11676) 6-(26,12,8340) 6-(25,12,5838)
6-(26,11,3336) 6-(25,11,2502)
6-(25,10,834)
-
5-(29,14,281336) 5-(28,14,175835) (#11045) 5-(27,14,107030) (#11046) 5-(26,14,63245) (#11053) 5-(25,14,36140) 5-(24,14,19877)
5-(28,13,105501) 5-(27,13,68805) (#11037) 5-(26,13,43785) (#11039) 5-(25,13,27105) 5-(24,13,16263)
5-(27,12,36696) 5-(26,12,25020) (#11038) 5-(25,12,16680) 5-(24,12,10842) (#1832)
5-(26,11,11676) 5-(25,11,8340) 5-(24,11,5838)
5-(25,10,3336) (#7455) 5-(24,10,2502) (#1364)
5-(24,9,834) (#7454)
-
10-(29,14,834)
- family 66, lambda = 846 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,846)
-
7-(27,12,3384) 7-(26,12,2538)
7-(26,11,846)
-
6-(27,12,11844) 6-(26,12,8460) 6-(25,12,5922)
6-(26,11,3384) 6-(25,11,2538)
6-(25,10,846)
-
5-(27,12,37224) 5-(26,12,25380) 5-(25,12,16920) 5-(24,12,10998) (#1864)
5-(26,11,11844) 5-(25,11,8460) 5-(24,11,5922)
5-(25,10,3384) (#7476) 5-(24,10,2538) (#1367)
5-(24,9,846) (#7475)
-
8-(27,12,846)
- family 67, lambda = 858 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,858)
-
10-(30,15,3432) 10-(29,15,2574)
10-(29,14,858)
-
9-(30,15,12012) 9-(29,15,8580) 9-(28,15,6006)
9-(29,14,3432) 9-(28,14,2574)
9-(28,13,858)
-
8-(30,15,37752) 8-(29,15,25740) 8-(28,15,17160) 8-(27,15,11154)
8-(29,14,12012) 8-(28,14,8580) 8-(27,14,6006)
8-(28,13,3432) 8-(27,13,2574)
8-(27,12,858)
-
7-(30,15,108537) 7-(29,15,70785) 7-(28,15,45045) 7-(27,15,27885) 7-(26,15,16731)
7-(29,14,37752) 7-(28,14,25740) 7-(27,14,17160) 7-(26,14,11154)
7-(28,13,12012) 7-(27,13,8580) 7-(26,13,6006)
7-(27,12,3432) 7-(26,12,2574)
7-(26,11,858)
-
6-(30,15,289432) 6-(29,15,180895) 6-(28,15,110110) 6-(27,15,65065) 6-(26,15,37180) 6-(25,15,20449)
6-(29,14,108537) 6-(28,14,70785) 6-(27,14,45045) 6-(26,14,27885) 6-(25,14,16731)
6-(28,13,37752) 6-(27,13,25740) 6-(26,13,17160) 6-(25,13,11154)
6-(27,12,12012) 6-(26,12,8580) 6-(25,12,6006)
6-(26,11,3432) 6-(25,11,2574)
6-(25,10,858)
-
5-(30,15,723580) (#7487) 5-(29,15,434148) 5-(28,15,253253) 5-(27,15,143143) 5-(26,15,78078) 5-(25,15,40898) 5-(24,15,20449)
5-(29,14,289432) (#7486) 5-(28,14,180895) (#1896) 5-(27,14,110110) 5-(26,14,65065) 5-(25,14,37180) 5-(24,14,20449)
5-(28,13,108537) (#7485) 5-(27,13,70785) (#1895) 5-(26,13,45045) (#1893) 5-(25,13,27885) 5-(24,13,16731)
5-(27,12,37752) (#7484) 5-(26,12,25740) (#1894) 5-(25,12,17160) (#1892) 5-(24,12,11154) (#1891)
5-(26,11,12012) (#7483) 5-(25,11,8580) (#1646) 5-(24,11,6006) (#1645)
5-(25,10,3432) (#7482) 5-(24,10,2574) (#1369)
5-(24,9,858) (#7481)
-
11-(30,15,858)
- family 68, lambda = 870 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,870)
-
7-(27,12,3480) 7-(26,12,2610)
7-(26,11,870)
-
6-(27,12,12180) 6-(26,12,8700) 6-(25,12,6090)
6-(26,11,3480) 6-(25,11,2610)
6-(25,10,870)
-
5-(27,12,38280) 5-(26,12,26100) 5-(25,12,17400) 5-(24,12,11310) (#1922)
5-(26,11,12180) 5-(25,11,8700) 5-(24,11,6090)
5-(25,10,3480) (#7493) 5-(24,10,2610) (#1371)
5-(24,9,870) (#7492)
-
8-(27,12,870)
- family 69, lambda = 882 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,882)
-
7-(27,12,3528) 7-(26,12,2646)
7-(26,11,882)
-
6-(27,12,12348) 6-(26,12,8820) 6-(25,12,6174)
6-(26,11,3528) 6-(25,11,2646)
6-(25,10,882)
-
5-(27,12,38808) 5-(26,12,26460) 5-(25,12,17640) 5-(24,12,11466) (#1949)
5-(26,11,12348) 5-(25,11,8820) 5-(24,11,6174)
5-(25,10,3528) (#7499) 5-(24,10,2646) (#1373)
5-(24,9,882) (#7498)
-
8-(27,12,882)
- family 70, lambda = 894 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,894)
-
7-(27,12,3576) 7-(26,12,2682)
7-(26,11,894)
-
6-(27,12,12516) 6-(26,12,8940) 6-(25,12,6258)
6-(26,11,3576) 6-(25,11,2682)
6-(25,10,894)
-
5-(27,12,39336) 5-(26,12,26820) 5-(25,12,17880) 5-(24,12,11622) (#1976)
5-(26,11,12516) 5-(25,11,8940) 5-(24,11,6258)
5-(25,10,3576) (#7505) 5-(24,10,2682) (#1375)
5-(24,9,894) (#7504)
-
8-(27,12,894)
- family 71, lambda = 906 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,906)
-
10-(30,15,3624) 10-(29,15,2718)
10-(29,14,906)
-
9-(30,15,12684) 9-(29,15,9060) 9-(28,15,6342)
9-(29,14,3624) 9-(28,14,2718)
9-(28,13,906)
-
8-(30,15,39864) 8-(29,15,27180) 8-(28,15,18120) 8-(27,15,11778)
8-(29,14,12684) 8-(28,14,9060) 8-(27,14,6342)
8-(28,13,3624) 8-(27,13,2718)
8-(27,12,906)
-
7-(30,15,114609) 7-(29,15,74745) 7-(28,15,47565) 7-(27,15,29445) 7-(26,15,17667)
7-(29,14,39864) 7-(28,14,27180) 7-(27,14,18120) 7-(26,14,11778)
7-(28,13,12684) 7-(27,13,9060) 7-(26,13,6342)
7-(27,12,3624) 7-(26,12,2718)
7-(26,11,906)
-
6-(30,15,305624) 6-(29,15,191015) 6-(28,15,116270) 6-(27,15,68705) 6-(26,15,39260) 6-(25,15,21593)
6-(29,14,114609) 6-(28,14,74745) 6-(27,14,47565) 6-(26,14,29445) 6-(25,14,17667)
6-(28,13,39864) 6-(27,13,27180) 6-(26,13,18120) 6-(25,13,11778)
6-(27,12,12684) 6-(26,12,9060) 6-(25,12,6342)
6-(26,11,3624) 6-(25,11,2718)
6-(25,10,906)
-
5-(30,15,764060) (#7518) 5-(29,15,458436) 5-(28,15,267421) 5-(27,15,151151) 5-(26,15,82446) 5-(25,15,43186) 5-(24,15,21593)
5-(29,14,305624) (#7517) 5-(28,14,191015) (#2007) 5-(27,14,116270) 5-(26,14,68705) 5-(25,14,39260) 5-(24,14,21593)
5-(28,13,114609) (#7516) 5-(27,13,74745) (#2006) 5-(26,13,47565) (#2004) 5-(25,13,29445) 5-(24,13,17667)
5-(27,12,39864) (#7515) 5-(26,12,27180) (#2005) 5-(25,12,18120) (#2003) 5-(24,12,11778) (#2002)
5-(26,11,12684) (#7514) 5-(25,11,9060) (#1648) 5-(24,11,6342) (#1647)
5-(25,10,3624) (#7513) 5-(24,10,2718) (#1378)
5-(24,9,906) (#7512)
-
11-(30,15,906)
- family 72, lambda = 918 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,918)
-
7-(27,12,3672) 7-(26,12,2754)
7-(26,11,918)
-
6-(27,12,12852) 6-(26,12,9180) 6-(25,12,6426)
6-(26,11,3672) 6-(25,11,2754)
6-(25,10,918)
-
5-(27,12,40392) 5-(26,12,27540) 5-(25,12,18360) 5-(24,12,11934) (#2034)
5-(26,11,12852) 5-(25,11,9180) 5-(24,11,6426)
5-(25,10,3672) (#7524) 5-(24,10,2754) (#1380)
5-(24,9,918) (#7523)
-
8-(27,12,918)
- family 73, lambda = 930 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,930)
-
7-(27,12,3720) 7-(26,12,2790)
7-(26,11,930)
-
6-(27,12,13020) 6-(26,12,9300) 6-(25,12,6510)
6-(26,11,3720) 6-(25,11,2790)
6-(25,10,930)
-
5-(27,12,40920) 5-(26,12,27900) 5-(25,12,18600) 5-(24,12,12090) (#2065)
5-(26,11,13020) 5-(25,11,9300) 5-(24,11,6510)
5-(25,10,3720) (#7541) 5-(24,10,2790) (#1382)
5-(24,9,930) (#7540)
-
8-(27,12,930)
- family 74, lambda = 942 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,942)
-
7-(27,12,3768) 7-(26,12,2826)
7-(26,11,942)
-
6-(27,12,13188) 6-(26,12,9420) 6-(25,12,6594)
6-(26,11,3768) 6-(25,11,2826)
6-(25,10,942)
-
5-(27,12,41448) 5-(26,12,28260) 5-(25,12,18840) 5-(24,12,12246) (#2092)
5-(26,11,13188) 5-(25,11,9420) 5-(24,11,6594)
5-(25,10,3768) (#7547) 5-(24,10,2826) (#1384)
5-(24,9,942) (#7546)
-
8-(27,12,942)
- family 75, lambda = 954 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,954)
-
7-(27,12,3816) 7-(26,12,2862)
7-(26,11,954)
-
6-(27,12,13356) 6-(26,12,9540) 6-(25,12,6678)
6-(26,11,3816) 6-(25,11,2862)
6-(25,10,954)
-
5-(27,12,41976) 5-(26,12,28620) 5-(25,12,19080) 5-(24,12,12402) (#2118)
5-(26,11,13356) 5-(25,11,9540) 5-(24,11,6678)
5-(25,10,3816) (#7553) 5-(24,10,2862) (#1386)
5-(24,9,954) (#7552)
-
8-(27,12,954)
- family 76, lambda = 966 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,966)
-
7-(27,12,3864) 7-(26,12,2898)
7-(26,11,966)
-
6-(27,12,13524) 6-(26,12,9660) 6-(25,12,6762)
6-(26,11,3864) 6-(25,11,2898)
6-(25,10,966)
-
5-(27,12,42504) 5-(26,12,28980) 5-(25,12,19320) 5-(24,12,12558) (#2145)
5-(26,11,13524) 5-(25,11,9660) 5-(24,11,6762)
5-(25,10,3864) (#7563) 5-(24,10,2898) (#1389)
5-(24,9,966) (#7562)
-
8-(27,12,966)
- family 77, lambda = 978 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,978)
-
7-(27,12,3912) 7-(26,12,2934)
7-(26,11,978)
-
6-(27,12,13692) 6-(26,12,9780) 6-(25,12,6846)
6-(26,11,3912) 6-(25,11,2934)
6-(25,10,978)
-
5-(27,12,43032) 5-(26,12,29340) 5-(25,12,19560) 5-(24,12,12714) (#2176)
5-(26,11,13692) 5-(25,11,9780) 5-(24,11,6846)
5-(25,10,3912) (#7580) 5-(24,10,2934) (#1391)
5-(24,9,978) (#7579)
-
8-(27,12,978)
- family 78, lambda = 990 containing 26 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,990)
-
10-(30,15,3960) 10-(29,15,2970)
10-(29,14,990)
-
9-(30,15,13860) 9-(29,15,9900) 9-(28,15,6930)
9-(29,14,3960) 9-(28,14,2970)
9-(28,13,990)
-
8-(30,15,43560) 8-(29,15,29700) 8-(28,15,19800) 8-(27,15,12870)
8-(29,14,13860) 8-(28,14,9900) 8-(27,14,6930)
8-(28,13,3960) 8-(27,13,2970)
8-(27,12,990)
-
7-(30,15,125235) 7-(29,15,81675) 7-(28,15,51975) 7-(27,15,32175) 7-(26,15,19305)
7-(29,14,43560) 7-(28,14,29700) (#11078) 7-(27,14,19800) 7-(26,14,12870)
7-(28,13,13860) 7-(27,13,9900) (#15103) 7-(26,13,6930)
7-(27,12,3960) 7-(26,12,2970)
7-(26,11,990)
-
6-(30,15,333960) 6-(29,15,208725) 6-(28,15,127050) 6-(27,15,75075) 6-(26,15,42900) 6-(25,15,23595)
6-(29,14,125235) 6-(28,14,81675) (#11077) 6-(27,14,51975) (#11085) 6-(26,14,32175) 6-(25,14,19305)
6-(28,13,43560) 6-(27,13,29700) (#11076) 6-(26,13,19800) (#15105) 6-(25,13,12870)
6-(27,12,13860) 6-(26,12,9900) (#15104) 6-(25,12,6930)
6-(26,11,3960) 6-(25,11,2970)
6-(25,10,990)
-
5-(30,15,834900) (#7591) 5-(29,15,500940) 5-(28,15,292215) 5-(27,15,165165) 5-(26,15,90090) 5-(25,15,47190) 5-(24,15,23595)
5-(29,14,333960) (#7590) 5-(28,14,208725) (#2208) 5-(27,14,127050) (#11082) 5-(26,14,75075) (#11089) 5-(25,14,42900) 5-(24,14,23595)
5-(28,13,125235) (#7589) 5-(27,13,81675) (#2207) 5-(26,13,51975) (#2205) 5-(25,13,32175) (#15110) 5-(24,13,19305)
5-(27,12,43560) (#7588) 5-(26,12,29700) (#2206) 5-(25,12,19800) (#2204) 5-(24,12,12870) (#2203)
5-(26,11,13860) (#7587) 5-(25,11,9900) (#1654) 5-(24,11,6930) (#1653)
5-(25,10,3960) (#7586) 5-(24,10,2970) (#1393)
5-(24,9,990) (#7585)
-
11-(30,15,990)
- family 79, lambda = 1002 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1002)
-
7-(27,12,4008) 7-(26,12,3006)
7-(26,11,1002)
-
6-(27,12,14028) 6-(26,12,10020) 6-(25,12,7014)
6-(26,11,4008) 6-(25,11,3006)
6-(25,10,1002)
-
5-(27,12,44088) 5-(26,12,30060) 5-(25,12,20040) 5-(24,12,13026) (#2235)
5-(26,11,14028) 5-(25,11,10020) 5-(24,11,7014)
5-(25,10,4008) (#6191) 5-(24,10,3006) (#1395)
5-(24,9,1002) (#6190)
-
8-(27,12,1002)
- family 80, lambda = 1014 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1014)
-
10-(30,15,4056) 10-(29,15,3042)
10-(29,14,1014)
-
9-(30,15,14196) 9-(29,15,10140) 9-(28,15,7098)
9-(29,14,4056) 9-(28,14,3042)
9-(28,13,1014)
-
8-(30,15,44616) 8-(29,15,30420) 8-(28,15,20280) 8-(27,15,13182)
8-(29,14,14196) 8-(28,14,10140) 8-(27,14,7098)
8-(28,13,4056) 8-(27,13,3042)
8-(27,12,1014)
-
7-(30,15,128271) 7-(29,15,83655) 7-(28,15,53235) 7-(27,15,32955) 7-(26,15,19773)
7-(29,14,44616) 7-(28,14,30420) (#11097) 7-(27,14,20280) 7-(26,14,13182)
7-(28,13,14196) 7-(27,13,10140) (#14868) 7-(26,13,7098)
7-(27,12,4056) 7-(26,12,3042)
7-(26,11,1014)
-
6-(30,15,342056) 6-(29,15,213785) 6-(28,15,130130) 6-(27,15,76895) 6-(26,15,43940) 6-(25,15,24167)
6-(29,14,128271) 6-(28,14,83655) (#11096) 6-(27,14,53235) (#11104) 6-(26,14,32955) 6-(25,14,19773)
6-(28,13,44616) 6-(27,13,30420) (#11092) 6-(26,13,20280) (#14870) 6-(25,13,13182)
6-(27,12,14196) 6-(26,12,10140) (#14869) 6-(25,12,7098)
6-(26,11,4056) 6-(25,11,3042)
6-(25,10,1014)
-
5-(30,15,855140) (#14883) 5-(29,15,513084) 5-(28,15,299299) 5-(27,15,169169) 5-(26,15,92274) 5-(25,15,48334) 5-(24,15,24167)
5-(29,14,342056) (#14882) 5-(28,14,213785) (#7700) 5-(27,14,130130) (#11101) 5-(26,14,76895) (#11108) 5-(25,14,43940) 5-(24,14,24167)
5-(28,13,128271) (#14881) 5-(27,13,83655) (#11093) 5-(26,13,53235) (#11095) 5-(25,13,32955) (#14877) 5-(24,13,19773)
5-(27,12,44616) (#14880) 5-(26,12,30420) (#11094) 5-(25,12,20280) (#14874) 5-(24,12,13182) (#2261)
5-(26,11,14196) (#14879) 5-(25,11,10140) (#14873) 5-(24,11,7098)
5-(25,10,4056) (#6197) 5-(24,10,3042) (#1397)
5-(24,9,1014) (#6196)
-
11-(30,15,1014)
- family 81, lambda = 1038 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1038)
-
10-(30,15,4152) 10-(29,15,3114)
10-(29,14,1038)
-
9-(30,15,14532) 9-(29,15,10380) 9-(28,15,7266)
9-(29,14,4152) 9-(28,14,3114)
9-(28,13,1038)
-
8-(30,15,45672) 8-(29,15,31140) 8-(28,15,20760) 8-(27,15,13494)
8-(29,14,14532) 8-(28,14,10380) 8-(27,14,7266)
8-(28,13,4152) 8-(27,13,3114)
8-(27,12,1038)
-
7-(30,15,131307) 7-(29,15,85635) 7-(28,15,54495) 7-(27,15,33735) 7-(26,15,20241)
7-(29,14,45672) 7-(28,14,31140) 7-(27,14,20760) 7-(26,14,13494)
7-(28,13,14532) 7-(27,13,10380) 7-(26,13,7266)
7-(27,12,4152) 7-(26,12,3114)
7-(26,11,1038)
-
6-(30,15,350152) 6-(29,15,218845) 6-(28,15,133210) 6-(27,15,78715) 6-(26,15,44980) 6-(25,15,24739)
6-(29,14,131307) 6-(28,14,85635) 6-(27,14,54495) 6-(26,14,33735) 6-(25,14,20241)
6-(28,13,45672) 6-(27,13,31140) 6-(26,13,20760) 6-(25,13,13494)
6-(27,12,14532) 6-(26,12,10380) 6-(25,12,7266)
6-(26,11,4152) 6-(25,11,3114)
6-(25,10,1038)
-
5-(30,15,875380) (#6218) 5-(29,15,525228) 5-(28,15,306383) 5-(27,15,173173) 5-(26,15,94458) 5-(25,15,49478) 5-(24,15,24739)
5-(29,14,350152) (#6217) 5-(28,14,218845) (#2319) 5-(27,14,133210) 5-(26,14,78715) 5-(25,14,44980) 5-(24,14,24739)
5-(28,13,131307) (#6216) 5-(27,13,85635) (#2318) 5-(26,13,54495) (#2316) 5-(25,13,33735) 5-(24,13,20241)
5-(27,12,45672) (#6215) 5-(26,12,31140) (#2317) 5-(25,12,20760) (#2315) 5-(24,12,13494) (#2314)
5-(26,11,14532) (#6214) 5-(25,11,10380) (#1656) 5-(24,11,7266) (#1655)
5-(25,10,4152) (#6213) 5-(24,10,3114) (#1401)
5-(24,9,1038) (#6212)
-
11-(30,15,1038)
- family 82, lambda = 1050 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1050)
-
7-(27,12,4200) 7-(26,12,3150)
7-(26,11,1050)
-
6-(27,12,14700) 6-(26,12,10500) 6-(25,12,7350)
6-(26,11,4200) 6-(25,11,3150)
6-(25,10,1050)
-
5-(27,12,46200) 5-(26,12,31500) 5-(25,12,21000) 5-(24,12,13650) (#2346)
5-(26,11,14700) 5-(25,11,10500) 5-(24,11,7350)
5-(25,10,4200) (#6224) 5-(24,10,3150) (#1403)
5-(24,9,1050) (#6223)
-
8-(27,12,1050)
- family 83, lambda = 1062 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1062)
-
7-(27,12,4248) 7-(26,12,3186)
7-(26,11,1062)
-
6-(27,12,14868) 6-(26,12,10620) 6-(25,12,7434)
6-(26,11,4248) 6-(25,11,3186)
6-(25,10,1062)
-
5-(27,12,46728) 5-(26,12,31860) 5-(25,12,21240) 5-(24,12,13806) (#2378)
5-(26,11,14868) 5-(25,11,10620) 5-(24,11,7434)
5-(25,10,4248) (#6241) 5-(24,10,3186) (#1405)
5-(24,9,1062) (#6240)
-
8-(27,12,1062)
- family 84, lambda = 1074 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1074)
-
7-(27,12,4296) 7-(26,12,3222)
7-(26,11,1074)
-
6-(27,12,15036) 6-(26,12,10740) 6-(25,12,7518)
6-(26,11,4296) 6-(25,11,3222)
6-(25,10,1074)
-
5-(27,12,47256) 5-(26,12,32220) 5-(25,12,21480) 5-(24,12,13962) (#2405)
5-(26,11,15036) 5-(25,11,10740) 5-(24,11,7518)
5-(25,10,4296) (#6247) 5-(24,10,3222) (#1407)
5-(24,9,1074) (#6246)
-
8-(27,12,1074)
- family 85, lambda = 1086 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1086)
-
7-(27,12,4344) 7-(26,12,3258)
7-(26,11,1086)
-
6-(27,12,15204) 6-(26,12,10860) 6-(25,12,7602)
6-(26,11,4344) 6-(25,11,3258)
6-(25,10,1086)
-
5-(27,12,47784) 5-(26,12,32580) 5-(25,12,21720) 5-(24,12,14118) (#2431)
5-(26,11,15204) 5-(25,11,10860) 5-(24,11,7602)
5-(25,10,4344) (#6257) 5-(24,10,3258) (#1410)
5-(24,9,1086) (#6256)
-
8-(27,12,1086)
- family 86, lambda = 1098 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1098)
-
7-(27,12,4392) 7-(26,12,3294)
7-(26,11,1098)
-
6-(27,12,15372) 6-(26,12,10980) 6-(25,12,7686)
6-(26,11,4392) 6-(25,11,3294)
6-(25,10,1098)
-
5-(27,12,48312) 5-(26,12,32940) 5-(25,12,21960) 5-(24,12,14274) (#2457)
5-(26,11,15372) 5-(25,11,10980) 5-(24,11,7686)
5-(25,10,4392) (#6263) 5-(24,10,3294) (#1412)
5-(24,9,1098) (#6262)
-
8-(27,12,1098)
- family 87, lambda = 1110 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1110)
-
7-(27,12,4440) 7-(26,12,3330)
7-(26,11,1110)
-
6-(27,12,15540) 6-(26,12,11100) 6-(25,12,7770)
6-(26,11,4440) 6-(25,11,3330)
6-(25,10,1110)
-
5-(27,12,48840) 5-(26,12,33300) 5-(25,12,22200) 5-(24,12,14430) (#2489)
5-(26,11,15540) 5-(25,11,11100) 5-(24,11,7770)
5-(25,10,4440) (#6280) 5-(24,10,3330) (#1414)
5-(24,9,1110) (#6279)
-
8-(27,12,1110)
- family 88, lambda = 1122 containing 23 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1122)
-
10-(30,15,4488) 10-(29,15,3366)
10-(29,14,1122)
-
9-(30,15,15708) 9-(29,15,11220) 9-(28,15,7854)
9-(29,14,4488) 9-(28,14,3366)
9-(28,13,1122)
-
8-(30,15,49368) 8-(29,15,33660) 8-(28,15,22440) 8-(27,15,14586)
8-(29,14,15708) 8-(28,14,11220) 8-(27,14,7854)
8-(28,13,4488) 8-(27,13,3366)
8-(27,12,1122)
-
7-(30,15,141933) 7-(29,15,92565) 7-(28,15,58905) 7-(27,15,36465) 7-(26,15,21879)
7-(29,14,49368) 7-(28,14,33660) 7-(27,14,22440) 7-(26,14,14586)
7-(28,13,15708) 7-(27,13,11220) 7-(26,13,7854) (#9874)
7-(27,12,4488) 7-(26,12,3366)
7-(26,11,1122)
-
6-(30,15,378488) 6-(29,15,236555) 6-(28,15,143990) 6-(27,15,85085) 6-(26,15,48620) 6-(25,15,26741)
6-(29,14,141933) 6-(28,14,92565) 6-(27,14,58905) 6-(26,14,36465) 6-(25,14,21879)
6-(28,13,49368) 6-(27,13,33660) 6-(26,13,22440) (#9873) 6-(25,13,14586) (#9881)
6-(27,12,15708) (#10803) 6-(26,12,11220) 6-(25,12,7854) (#9872)
6-(26,11,4488) 6-(25,11,3366)
6-(25,10,1122)
-
5-(30,15,946220) (#6291) 5-(29,15,567732) 5-(28,15,331177) 5-(27,15,187187) 5-(26,15,102102) 5-(25,15,53482) 5-(24,15,26741)
5-(29,14,378488) (#6290) 5-(28,14,236555) (#2521) 5-(27,14,143990) 5-(26,14,85085) 5-(25,14,48620) 5-(24,14,26741)
5-(28,13,141933) (#6289) 5-(27,13,92565) (#2520) 5-(26,13,58905) (#2518) 5-(25,13,36465) (#9878) 5-(24,13,21879) (#9885)
5-(27,12,49368) (#6288) 5-(26,12,33660) (#2519) 5-(25,12,22440) (#2517) 5-(24,12,14586) (#2516)
5-(26,11,15708) (#6287) 5-(25,11,11220) (#1662) 5-(24,11,7854) (#1661)
5-(25,10,4488) (#6286) 5-(24,10,3366) (#1416)
5-(24,9,1122) (#6285)
-
11-(30,15,1122)
- family 89, lambda = 1134 containing 19 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1134)
-
10-(30,15,4536) 10-(29,15,3402)
10-(29,14,1134)
-
9-(30,15,15876) 9-(29,15,11340) 9-(28,15,7938)
9-(29,14,4536) 9-(28,14,3402)
9-(28,13,1134)
-
8-(30,15,49896) 8-(29,15,34020) 8-(28,15,22680) 8-(27,15,14742)
8-(29,14,15876) 8-(28,14,11340) 8-(27,14,7938)
8-(28,13,4536) 8-(27,13,3402)
8-(27,12,1134)
-
7-(30,15,143451) 7-(29,15,93555) 7-(28,15,59535) 7-(27,15,36855) 7-(26,15,22113)
7-(29,14,49896) 7-(28,14,34020) 7-(27,14,22680) 7-(26,14,14742)
7-(28,13,15876) 7-(27,13,11340) 7-(26,13,7938)
7-(27,12,4536) (#14710) 7-(26,12,3402)
7-(26,11,1134)
-
6-(30,15,382536) 6-(29,15,239085) 6-(28,15,145530) 6-(27,15,85995) 6-(26,15,49140) 6-(25,15,27027)
6-(29,14,143451) 6-(28,14,93555) 6-(27,14,59535) 6-(26,14,36855) 6-(25,14,22113)
6-(28,13,49896) 6-(27,13,34020) 6-(26,13,22680) 6-(25,13,14742)
6-(27,12,15876) (#10812) 6-(26,12,11340) (#14712) 6-(25,12,7938)
6-(26,11,4536) (#14711) 6-(25,11,3402)
6-(25,10,1134)
-
5-(30,15,956340) (#14731) 5-(29,15,573804) 5-(28,15,334719) 5-(27,15,189189) 5-(26,15,103194) 5-(25,15,54054) 5-(24,15,27027)
5-(29,14,382536) (#14729) 5-(28,14,239085) (#14725) 5-(27,14,145530) 5-(26,14,85995) 5-(25,14,49140) 5-(24,14,27027)
5-(28,13,143451) (#14726) 5-(27,13,93555) (#14723) 5-(26,13,59535) (#14721) 5-(25,13,36855) 5-(24,13,22113)
5-(27,12,49896) (#10813) 5-(26,12,34020) (#10815) 5-(25,12,22680) (#14719) 5-(24,12,14742) (#2546)
5-(26,11,15876) (#10814) 5-(25,11,11340) (#14716) 5-(24,11,7938)
5-(25,10,4536) (#6297) 5-(24,10,3402) (#1418)
5-(24,9,1134) (#6296)
-
11-(30,15,1134)
- family 90, lambda = 1146 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1146)
-
7-(27,12,4584) 7-(26,12,3438)
7-(26,11,1146)
-
6-(27,12,16044) 6-(26,12,11460) 6-(25,12,8022)
6-(26,11,4584) 6-(25,11,3438)
6-(25,10,1146)
-
5-(27,12,50424) 5-(26,12,34380) 5-(25,12,22920) 5-(24,12,14898) (#2578)
5-(26,11,16044) 5-(25,11,11460) 5-(24,11,8022)
5-(25,10,4584) (#6306) 5-(24,10,3438) (#1420)
5-(24,9,1146) (#6305)
-
8-(27,12,1146)
- family 91, lambda = 1158 containing 14 designs:
minpath=(0, 1, 0) minimal_t=5-
10-(29,14,1158)
-
9-(29,14,4632) 9-(28,14,3474)
9-(28,13,1158)
-
8-(29,14,16212) 8-(28,14,11580) 8-(27,14,8106)
8-(28,13,4632) 8-(27,13,3474)
8-(27,12,1158)
-
7-(29,14,50952) 7-(28,14,34740) (#11154) 7-(27,14,23160) 7-(26,14,15054)
7-(28,13,16212) 7-(27,13,11580) 7-(26,13,8106)
7-(27,12,4632) 7-(26,12,3474)
7-(26,11,1158)
-
6-(29,14,146487) 6-(28,14,95535) (#11153) 6-(27,14,60795) (#11162) 6-(26,14,37635) 6-(25,14,22581)
6-(28,13,50952) 6-(27,13,34740) (#11149) 6-(26,13,23160) 6-(25,13,15054)
6-(27,12,16212) 6-(26,12,11580) 6-(25,12,8106)
6-(26,11,4632) 6-(25,11,3474)
6-(25,10,1158)
-
5-(29,14,390632) 5-(28,14,244145) (#11158) 5-(27,14,148610) (#11159) 5-(26,14,87815) (#11166) 5-(25,14,50180) 5-(24,14,27599)
5-(28,13,146487) 5-(27,13,95535) (#11150) 5-(26,13,60795) (#11152) 5-(25,13,37635) 5-(24,13,22581)
5-(27,12,50952) 5-(26,12,34740) (#11151) 5-(25,12,23160) 5-(24,12,15054) (#2607)
5-(26,11,16212) 5-(25,11,11580) 5-(24,11,8106)
5-(25,10,4632) (#6312) 5-(24,10,3474) (#1422)
5-(24,9,1158) (#6311)
-
10-(29,14,1158)
- family 92, lambda = 1170 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1170)
-
10-(30,15,4680) 10-(29,15,3510)
10-(29,14,1170)
-
9-(30,15,16380) 9-(29,15,11700) 9-(28,15,8190)
9-(29,14,4680) 9-(28,14,3510)
9-(28,13,1170)
-
8-(30,15,51480) 8-(29,15,35100) 8-(28,15,23400) 8-(27,15,15210)
8-(29,14,16380) 8-(28,14,11700) 8-(27,14,8190)
8-(28,13,4680) 8-(27,13,3510)
8-(27,12,1170)
-
7-(30,15,148005) 7-(29,15,96525) 7-(28,15,61425) 7-(27,15,38025) 7-(26,15,22815)
7-(29,14,51480) 7-(28,14,35100) 7-(27,14,23400) 7-(26,14,15210)
7-(28,13,16380) 7-(27,13,11700) 7-(26,13,8190) (#9890)
7-(27,12,4680) 7-(26,12,3510)
7-(26,11,1170)
-
6-(30,15,394680) 6-(29,15,246675) 6-(28,15,150150) 6-(27,15,88725) 6-(26,15,50700) 6-(25,15,27885)
6-(29,14,148005) 6-(28,14,96525) 6-(27,14,61425) 6-(26,14,38025) 6-(25,14,22815)
6-(28,13,51480) 6-(27,13,35100) 6-(26,13,23400) (#9889) 6-(25,13,15210) (#9897)
6-(27,12,16380) 6-(26,12,11700) 6-(25,12,8190) (#9888)
6-(26,11,4680) 6-(25,11,3510)
6-(25,10,1170)
-
5-(30,15,986700) (#6323) 5-(29,15,592020) 5-(28,15,345345) 5-(27,15,195195) 5-(26,15,106470) 5-(25,15,55770) 5-(24,15,27885)
5-(29,14,394680) (#6322) 5-(28,14,246675) (#2639) 5-(27,14,150150) 5-(26,14,88725) 5-(25,14,50700) 5-(24,14,27885)
5-(28,13,148005) (#6321) 5-(27,13,96525) (#2638) 5-(26,13,61425) (#2636) 5-(25,13,38025) (#9894) 5-(24,13,22815) (#9901)
5-(27,12,51480) (#6320) 5-(26,12,35100) (#2637) 5-(25,12,23400) (#2635) 5-(24,12,15210) (#2634)
5-(26,11,16380) (#6319) 5-(25,11,11700) (#1666) 5-(24,11,8190) (#1665)
5-(25,10,4680) (#6318) 5-(24,10,3510) (#1424)
5-(24,9,1170) (#6317)
-
11-(30,15,1170)
- family 93, lambda = 1182 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1182)
-
7-(27,12,4728) 7-(26,12,3546)
7-(26,11,1182)
-
6-(27,12,16548) 6-(26,12,11820) 6-(25,12,8274)
6-(26,11,4728) 6-(25,11,3546)
6-(25,10,1182)
-
5-(27,12,52008) 5-(26,12,35460) 5-(25,12,23640) 5-(24,12,15366) (#2665)
5-(26,11,16548) 5-(25,11,11820) 5-(24,11,8274)
5-(25,10,4728) (#6329) 5-(24,10,3546) (#1426)
5-(24,9,1182) (#6328)
-
8-(27,12,1182)
- family 94, lambda = 1194 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1194)
-
7-(27,12,4776) 7-(26,12,3582)
7-(26,11,1194)
-
6-(27,12,16716) 6-(26,12,11940) 6-(25,12,8358)
6-(26,11,4776) 6-(25,11,3582)
6-(25,10,1194)
-
5-(27,12,52536) 5-(26,12,35820) 5-(25,12,23880) 5-(24,12,15522) (#2695)
5-(26,11,16716) 5-(25,11,11940) 5-(24,11,8358)
5-(25,10,4776) (#6346) 5-(24,10,3582) (#1428)
5-(24,9,1194) (#6345)
-
8-(27,12,1194)
- family 95, lambda = 1206 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1206)
-
7-(27,12,4824) 7-(26,12,3618)
7-(26,11,1206)
-
6-(27,12,16884) 6-(26,12,12060) 6-(25,12,8442)
6-(26,11,4824) 6-(25,11,3618)
6-(25,10,1206)
-
5-(27,12,53064) 5-(26,12,36180) 5-(25,12,24120) 5-(24,12,15678) (#2722)
5-(26,11,16884) 5-(25,11,12060) 5-(24,11,8442)
5-(25,10,4824) (#6360) 5-(24,10,3618) (#1432)
5-(24,9,1206) (#6359)
-
8-(27,12,1206)
- family 96, lambda = 1218 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1218)
-
7-(27,12,4872) 7-(26,12,3654)
7-(26,11,1218)
-
6-(27,12,17052) 6-(26,12,12180) 6-(25,12,8526)
6-(26,11,4872) 6-(25,11,3654)
6-(25,10,1218)
-
5-(27,12,53592) 5-(26,12,36540) 5-(25,12,24360) 5-(24,12,15834) (#2747)
5-(26,11,17052) 5-(25,11,12180) 5-(24,11,8526)
5-(25,10,4872) (#6366) 5-(24,10,3654) (#1434)
5-(24,9,1218) (#6365)
-
8-(27,12,1218)
- family 97, lambda = 1230 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1230)
-
7-(27,12,4920) 7-(26,12,3690)
7-(26,11,1230)
-
6-(27,12,17220) 6-(26,12,12300) 6-(25,12,8610)
6-(26,11,4920) 6-(25,11,3690)
6-(25,10,1230)
-
5-(27,12,54120) 5-(26,12,36900) 5-(25,12,24600) 5-(24,12,15990) (#2773)
5-(26,11,17220) 5-(25,11,12300) 5-(24,11,8610)
5-(25,10,4920) (#6376) 5-(24,10,3690) (#1436)
5-(24,9,1230) (#6375)
-
8-(27,12,1230)
- family 98, lambda = 1242 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1242)
-
7-(27,12,4968) 7-(26,12,3726)
7-(26,11,1242)
-
6-(27,12,17388) 6-(26,12,12420) 6-(25,12,8694)
6-(26,11,4968) 6-(25,11,3726)
6-(25,10,1242)
-
5-(27,12,54648) 5-(26,12,37260) 5-(25,12,24840) 5-(24,12,16146) (#2805)
5-(26,11,17388) 5-(25,11,12420) 5-(24,11,8694)
5-(25,10,4968) (#6393) 5-(24,10,3726) (#1438)
5-(24,9,1242) (#6392)
-
8-(27,12,1242)
- family 99, lambda = 1266 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1266)
-
7-(27,12,5064) 7-(26,12,3798)
7-(26,11,1266)
-
6-(27,12,17724) 6-(26,12,12660) 6-(25,12,8862)
6-(26,11,5064) 6-(25,11,3798)
6-(25,10,1266)
-
5-(27,12,55704) 5-(26,12,37980) 5-(25,12,25320) 5-(24,12,16458) (#2861)
5-(26,11,17724) 5-(25,11,12660) 5-(24,11,8862)
5-(25,10,5064) (#6412) 5-(24,10,3798) (#1443)
5-(24,9,1266) (#6411)
-
8-(27,12,1266)
- family 100, lambda = 1278 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1278)
-
7-(27,12,5112) 7-(26,12,3834)
7-(26,11,1278)
-
6-(27,12,17892) 6-(26,12,12780) 6-(25,12,8946)
6-(26,11,5112) 6-(25,11,3834)
6-(25,10,1278)
-
5-(27,12,56232) 5-(26,12,38340) 5-(25,12,25560) 5-(24,12,16614) (#2888)
5-(26,11,17892) 5-(25,11,12780) 5-(24,11,8946)
5-(25,10,5112) (#6418) 5-(24,10,3834) (#1445)
5-(24,9,1278) (#6417)
-
8-(27,12,1278)
- family 101, lambda = 1290 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1290)
-
7-(27,12,5160) 7-(26,12,3870)
7-(26,11,1290)
-
6-(27,12,18060) 6-(26,12,12900) 6-(25,12,9030)
6-(26,11,5160) 6-(25,11,3870)
6-(25,10,1290)
-
5-(27,12,56760) 5-(26,12,38700) 5-(25,12,25800) 5-(24,12,16770) (#2914)
5-(26,11,18060) 5-(25,11,12900) 5-(24,11,9030)
5-(25,10,5160) (#6424) 5-(24,10,3870) (#1447)
5-(24,9,1290) (#6423)
-
8-(27,12,1290)
- family 102, lambda = 1302 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1302)
-
10-(30,15,5208) 10-(29,15,3906)
10-(29,14,1302)
-
9-(30,15,18228) 9-(29,15,13020) 9-(28,15,9114)
9-(29,14,5208) 9-(28,14,3906)
9-(28,13,1302)
-
8-(30,15,57288) 8-(29,15,39060) 8-(28,15,26040) 8-(27,15,16926)
8-(29,14,18228) 8-(28,14,13020) 8-(27,14,9114)
8-(28,13,5208) 8-(27,13,3906)
8-(27,12,1302)
-
7-(30,15,164703) 7-(29,15,107415) 7-(28,15,68355) 7-(27,15,42315) 7-(26,15,25389)
7-(29,14,57288) 7-(28,14,39060) 7-(27,14,26040) 7-(26,14,16926)
7-(28,13,18228) 7-(27,13,13020) 7-(26,13,9114) (#9950)
7-(27,12,5208) 7-(26,12,3906)
7-(26,11,1302)
-
6-(30,15,439208) 6-(29,15,274505) 6-(28,15,167090) 6-(27,15,98735) 6-(26,15,56420) 6-(25,15,31031)
6-(29,14,164703) 6-(28,14,107415) 6-(27,14,68355) 6-(26,14,42315) 6-(25,14,25389)
6-(28,13,57288) 6-(27,13,39060) 6-(26,13,26040) (#9949) 6-(25,13,16926) (#9957)
6-(27,12,18228) 6-(26,12,13020) 6-(25,12,9114) (#9948)
6-(26,11,5208) 6-(25,11,3906)
6-(25,10,1302)
-
5-(30,15,1098020) (#6435) 5-(29,15,658812) 5-(28,15,384307) 5-(27,15,217217) 5-(26,15,118482) 5-(25,15,62062) 5-(24,15,31031)
5-(29,14,439208) (#6434) 5-(28,14,274505) (#2945) 5-(27,14,167090) 5-(26,14,98735) 5-(25,14,56420) 5-(24,14,31031)
5-(28,13,164703) (#6433) 5-(27,13,107415) (#2944) 5-(26,13,68355) (#2942) 5-(25,13,42315) (#9954) 5-(24,13,25389) (#9961)
5-(27,12,57288) (#6432) 5-(26,12,39060) (#2943) 5-(25,12,26040) (#2941) 5-(24,12,16926) (#2940)
5-(26,11,18228) (#6431) 5-(25,11,13020) (#1674) 5-(24,11,9114) (#1673)
5-(25,10,5208) (#6430) 5-(24,10,3906) (#1449)
5-(24,9,1302) (#6429)
-
11-(30,15,1302)
- family 103, lambda = 1314 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1314)
-
10-(30,15,5256) 10-(29,15,3942)
10-(29,14,1314)
-
9-(30,15,18396) 9-(29,15,13140) 9-(28,15,9198)
9-(29,14,5256) 9-(28,14,3942)
9-(28,13,1314)
-
8-(30,15,57816) 8-(29,15,39420) 8-(28,15,26280) 8-(27,15,17082)
8-(29,14,18396) 8-(28,14,13140) 8-(27,14,9198)
8-(28,13,5256) 8-(27,13,3942)
8-(27,12,1314)
-
7-(30,15,166221) 7-(29,15,108405) 7-(28,15,68985) 7-(27,15,42705) 7-(26,15,25623)
7-(29,14,57816) 7-(28,14,39420) (#11174) 7-(27,14,26280) 7-(26,14,17082)
7-(28,13,18396) 7-(27,13,13140) (#14884) 7-(26,13,9198)
7-(27,12,5256) 7-(26,12,3942)
7-(26,11,1314)
-
6-(30,15,443256) 6-(29,15,277035) 6-(28,15,168630) 6-(27,15,99645) 6-(26,15,56940) 6-(25,15,31317)
6-(29,14,166221) 6-(28,14,108405) (#11173) 6-(27,14,68985) (#11182) 6-(26,14,42705) 6-(25,14,25623)
6-(28,13,57816) 6-(27,13,39420) (#11169) 6-(26,13,26280) (#14886) 6-(25,13,17082)
6-(27,12,18396) 6-(26,12,13140) (#14885) 6-(25,12,9198)
6-(26,11,5256) 6-(25,11,3942)
6-(25,10,1314)
-
5-(30,15,1108140) (#14899) 5-(29,15,664884) 5-(28,15,387849) 5-(27,15,219219) 5-(26,15,119574) 5-(25,15,62634) 5-(24,15,31317)
5-(29,14,443256) (#14898) 5-(28,14,277035) (#11178) 5-(27,14,168630) (#11179) 5-(26,14,99645) (#11186) 5-(25,14,56940) 5-(24,14,31317)
5-(28,13,166221) (#14897) 5-(27,13,108405) (#11170) 5-(26,13,68985) (#11172) 5-(25,13,42705) (#14893) 5-(24,13,25623)
5-(27,12,57816) (#14896) 5-(26,12,39420) (#11171) 5-(25,12,26280) (#14890) 5-(24,12,17082) (#2972)
5-(26,11,18396) (#14895) 5-(25,11,13140) (#14889) 5-(24,11,9198)
5-(25,10,5256) (#6441) 5-(24,10,3942) (#1451)
5-(24,9,1314) (#6440)
-
11-(30,15,1314)
- family 104, lambda = 1326 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1326)
-
7-(27,12,5304) 7-(26,12,3978)
7-(26,11,1326)
-
6-(27,12,18564) 6-(26,12,13260) 6-(25,12,9282)
6-(26,11,5304) 6-(25,11,3978)
6-(25,10,1326)
-
5-(27,12,58344) 5-(26,12,39780) 5-(25,12,26520) 5-(24,12,17238) (#3008)
5-(26,11,18564) 5-(25,11,13260) 5-(24,11,9282)
5-(25,10,5304) (#6473) 5-(24,10,3978) (#1454)
5-(24,9,1326) (#6472)
-
8-(27,12,1326)
- family 105, lambda = 1338 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1338)
-
7-(27,12,5352) 7-(26,12,4014)
7-(26,11,1338)
-
6-(27,12,18732) 6-(26,12,13380) 6-(25,12,9366)
6-(26,11,5352) 6-(25,11,4014)
6-(25,10,1338)
-
5-(27,12,58872) 5-(26,12,40140) 5-(25,12,26760) 5-(24,12,17394) (#3034)
5-(26,11,18732) 5-(25,11,13380) 5-(24,11,9366)
5-(25,10,5352) (#6479) 5-(24,10,4014) (#1456)
5-(24,9,1338) (#6478)
-
8-(27,12,1338)
- family 106, lambda = 1350 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1350)
-
7-(27,12,5400) 7-(26,12,4050)
7-(26,11,1350)
-
6-(27,12,18900) 6-(26,12,13500) 6-(25,12,9450)
6-(26,11,5400) 6-(25,11,4050)
6-(25,10,1350)
-
5-(27,12,59400) 5-(26,12,40500) 5-(25,12,27000) 5-(24,12,17550) (#3060)
5-(26,11,18900) 5-(25,11,13500) 5-(24,11,9450)
5-(25,10,5400) (#6485) 5-(24,10,4050) (#1458)
5-(24,9,1350) (#6484)
-
8-(27,12,1350)
- family 107, lambda = 1362 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1362)
-
7-(27,12,5448) 7-(26,12,4086)
7-(26,11,1362)
-
6-(27,12,19068) 6-(26,12,13620) 6-(25,12,9534)
6-(26,11,5448) 6-(25,11,4086)
6-(25,10,1362)
-
5-(27,12,59928) 5-(26,12,40860) 5-(25,12,27240) 5-(24,12,17706) (#3086)
5-(26,11,19068) 5-(25,11,13620) 5-(24,11,9534)
5-(25,10,5448) (#6491) 5-(24,10,4086) (#1460)
5-(24,9,1362) (#6490)
-
8-(27,12,1362)
- family 108, lambda = 1374 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1374)
-
7-(27,12,5496) 7-(26,12,4122)
7-(26,11,1374)
-
6-(27,12,19236) 6-(26,12,13740) 6-(25,12,9618)
6-(26,11,5496) 6-(25,11,4122)
6-(25,10,1374)
-
5-(27,12,60456) 5-(26,12,41220) 5-(25,12,27480) 5-(24,12,17862) (#3118)
5-(26,11,19236) 5-(25,11,13740) 5-(24,11,9618)
5-(25,10,5496) (#6508) 5-(24,10,4122) (#1462)
5-(24,9,1374) (#6507)
-
8-(27,12,1374)
- family 109, lambda = 1386 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1386)
-
10-(30,15,5544) 10-(29,15,4158)
10-(29,14,1386)
-
9-(30,15,19404) 9-(29,15,13860) 9-(28,15,9702)
9-(29,14,5544) 9-(28,14,4158)
9-(28,13,1386)
-
8-(30,15,60984) 8-(29,15,41580) 8-(28,15,27720) 8-(27,15,18018)
8-(29,14,19404) 8-(28,14,13860) 8-(27,14,9702)
8-(28,13,5544) 8-(27,13,4158)
8-(27,12,1386)
-
7-(30,15,175329) 7-(29,15,114345) 7-(28,15,72765) 7-(27,15,45045) 7-(26,15,27027)
7-(29,14,60984) 7-(28,14,41580) 7-(27,14,27720) 7-(26,14,18018)
7-(28,13,19404) 7-(27,13,13860) 7-(26,13,9702) (#9982)
7-(27,12,5544) 7-(26,12,4158)
7-(26,11,1386)
-
6-(30,15,467544) 6-(29,15,292215) 6-(28,15,177870) 6-(27,15,105105) 6-(26,15,60060) 6-(25,15,33033)
6-(29,14,175329) 6-(28,14,114345) 6-(27,14,72765) 6-(26,14,45045) 6-(25,14,27027)
6-(28,13,60984) 6-(27,13,41580) 6-(26,13,27720) (#9981) 6-(25,13,18018) (#9989)
6-(27,12,19404) 6-(26,12,13860) 6-(25,12,9702) (#9980)
6-(26,11,5544) 6-(25,11,4158)
6-(25,10,1386)
-
5-(30,15,1168860) (#6521) 5-(29,15,701316) 5-(28,15,409101) 5-(27,15,231231) 5-(26,15,126126) 5-(25,15,66066) 5-(24,15,33033)
5-(29,14,467544) (#6520) 5-(28,14,292215) (#3150) 5-(27,14,177870) 5-(26,14,105105) 5-(25,14,60060) 5-(24,14,33033)
5-(28,13,175329) (#6519) 5-(27,13,114345) (#3149) 5-(26,13,72765) (#3147) 5-(25,13,45045) (#9986) 5-(24,13,27027) (#9993)
5-(27,12,60984) (#6518) 5-(26,12,41580) (#3148) 5-(25,12,27720) (#3146) 5-(24,12,18018) (#3145)
5-(26,11,19404) (#6517) 5-(25,11,13860) (#1682) 5-(24,11,9702) (#1681)
5-(25,10,5544) (#6516) 5-(24,10,4158) (#1465)
5-(24,9,1386) (#6515)
-
11-(30,15,1386)
- family 110, lambda = 1398 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1398)
-
7-(27,12,5592) 7-(26,12,4194)
7-(26,11,1398)
-
6-(27,12,19572) 6-(26,12,13980) 6-(25,12,9786)
6-(26,11,5592) 6-(25,11,4194)
6-(25,10,1398)
-
5-(27,12,61512) 5-(26,12,41940) 5-(25,12,27960) 5-(24,12,18174) (#3177)
5-(26,11,19572) 5-(25,11,13980) 5-(24,11,9786)
5-(25,10,5592) (#6527) 5-(24,10,4194) (#1467)
5-(24,9,1398) (#6526)
-
8-(27,12,1398)
- family 111, lambda = 1410 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1410)
-
7-(27,12,5640) 7-(26,12,4230)
7-(26,11,1410)
-
6-(27,12,19740) 6-(26,12,14100) 6-(25,12,9870)
6-(26,11,5640) 6-(25,11,4230)
6-(25,10,1410)
-
5-(27,12,62040) 5-(26,12,42300) 5-(25,12,28200) 5-(24,12,18330) (#3204)
5-(26,11,19740) 5-(25,11,14100) 5-(24,11,9870)
5-(25,10,5640) (#6533) 5-(24,10,4230) (#1469)
5-(24,9,1410) (#6532)
-
8-(27,12,1410)
- family 112, lambda = 1422 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1422)
-
7-(27,12,5688) 7-(26,12,4266)
7-(26,11,1422)
-
6-(27,12,19908) 6-(26,12,14220) 6-(25,12,9954)
6-(26,11,5688) 6-(25,11,4266)
6-(25,10,1422)
-
5-(27,12,62568) 5-(26,12,42660) 5-(25,12,28440) 5-(24,12,18486) (#3231)
5-(26,11,19908) 5-(25,11,14220) 5-(24,11,9954)
5-(25,10,5688) (#6539) 5-(24,10,4266) (#1471)
5-(24,9,1422) (#6538)
-
8-(27,12,1422)
- family 113, lambda = 1434 containing 16 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1434)
-
10-(30,15,5736) 10-(29,15,4302)
10-(29,14,1434)
-
9-(30,15,20076) 9-(29,15,14340) 9-(28,15,10038)
9-(29,14,5736) 9-(28,14,4302)
9-(28,13,1434)
-
8-(30,15,63096) 8-(29,15,43020) 8-(28,15,28680) 8-(27,15,18642)
8-(29,14,20076) 8-(28,14,14340) 8-(27,14,10038)
8-(28,13,5736) 8-(27,13,4302)
8-(27,12,1434)
-
7-(30,15,181401) 7-(29,15,118305) 7-(28,15,75285) 7-(27,15,46605) 7-(26,15,27963)
7-(29,14,63096) 7-(28,14,43020) 7-(27,14,28680) 7-(26,14,18642)
7-(28,13,20076) 7-(27,13,14340) 7-(26,13,10038)
7-(27,12,5736) 7-(26,12,4302)
7-(26,11,1434)
-
6-(30,15,483736) 6-(29,15,302335) 6-(28,15,184030) 6-(27,15,108745) 6-(26,15,62140) 6-(25,15,34177)
6-(29,14,181401) 6-(28,14,118305) 6-(27,14,75285) 6-(26,14,46605) 6-(25,14,27963)
6-(28,13,63096) 6-(27,13,43020) 6-(26,13,28680) 6-(25,13,18642)
6-(27,12,20076) 6-(26,12,14340) 6-(25,12,10038)
6-(26,11,5736) 6-(25,11,4302)
6-(25,10,1434)
-
5-(30,15,1209340) (#6554) 5-(29,15,725604) 5-(28,15,423269) 5-(27,15,239239) 5-(26,15,130494) 5-(25,15,68354) 5-(24,15,34177)
5-(29,14,483736) (#6553) 5-(28,14,302335) (#3262) 5-(27,14,184030) 5-(26,14,108745) 5-(25,14,62140) 5-(24,14,34177)
5-(28,13,181401) (#6552) 5-(27,13,118305) (#3261) 5-(26,13,75285) (#3259) 5-(25,13,46605) 5-(24,13,27963)
5-(27,12,63096) (#6551) 5-(26,12,43020) (#3260) 5-(25,12,28680) (#3258) 5-(24,12,18642) (#3257)
5-(26,11,20076) (#6550) 5-(25,11,14340) (#1590) 5-(24,11,10038) (#1589)
5-(25,10,5736) (#6549) 5-(24,10,4302) (#1473)
5-(24,9,1434) (#6548)
-
11-(30,15,1434)
- family 114, lambda = 1446 containing 8 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1446)
-
7-(27,12,5784) 7-(26,12,4338)
7-(26,11,1446)
-
6-(27,12,20244) (#10835) 6-(26,12,14460) 6-(25,12,10122)
6-(26,11,5784) 6-(25,11,4338)
6-(25,10,1446)
-
5-(27,12,63624) (#10836) 5-(26,12,43380) (#10838) 5-(25,12,28920) 5-(24,12,18798) (#3289)
5-(26,11,20244) (#10837) 5-(25,11,14460) 5-(24,11,10122)
5-(25,10,5784) (#6564) 5-(24,10,4338) (#1476)
5-(24,9,1446) (#6563)
-
8-(27,12,1446)
- family 115, lambda = 1458 containing 38 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1458)
-
10-(30,15,5832) 10-(29,15,4374)
10-(29,14,1458)
-
9-(30,15,20412) 9-(29,15,14580) 9-(28,15,10206)
9-(29,14,5832) 9-(28,14,4374)
9-(28,13,1458)
-
8-(30,15,64152) 8-(29,15,43740) 8-(28,15,29160) 8-(27,15,18954)
8-(29,14,20412) 8-(28,14,14580) 8-(27,14,10206)
8-(28,13,5832) (#17915) 8-(27,13,4374)
8-(27,12,1458)
-
7-(30,15,184437) (#11269) 7-(29,15,120285) 7-(28,15,76545) 7-(27,15,47385) 7-(26,15,28431)
7-(29,14,64152) (#17921) 7-(28,14,43740) (#11251) 7-(27,14,29160) 7-(26,14,18954)
7-(28,13,20412) (#17916) 7-(27,13,14580) (#17917) 7-(26,13,10206)
7-(27,12,5832) (#14789) 7-(26,12,4374)
7-(26,11,1458)
-
6-(30,15,491832) (#11268) 6-(29,15,307395) (#11277) 6-(28,15,187110) 6-(27,15,110565) 6-(26,15,63180) 6-(25,15,34749)
6-(29,14,184437) (#11260) 6-(28,14,120285) (#11250) 6-(27,14,76545) (#11261) 6-(26,14,47385) 6-(25,14,28431)
6-(28,13,64152) (#11254) 6-(27,13,43740) (#11247) 6-(26,13,29160) (#17922) 6-(25,13,18954)
6-(27,12,20412) (#10842) 6-(26,12,14580) (#14791) 6-(25,12,10206)
6-(26,11,5832) (#14790) 6-(25,11,4374)
6-(25,10,1458)
-
5-(30,15,1229580) (#11273) 5-(29,15,737748) (#11275) 5-(28,15,430353) (#11281) 5-(27,15,243243) 5-(26,15,132678) 5-(25,15,69498) 5-(24,15,34749)
5-(29,14,491832) (#11266) 5-(28,14,307395) (#11255) 5-(27,14,187110) (#11257) 5-(26,14,110565) (#11270) 5-(25,14,63180) 5-(24,14,34749)
5-(28,13,184437) (#11256) 5-(27,13,120285) (#11248) 5-(26,13,76545) (#11249) 5-(25,13,47385) (#17925) 5-(24,13,28431)
5-(27,12,64152) (#10843) 5-(26,12,43740) (#10845) 5-(25,12,29160) (#14798) 5-(24,12,18954) (#3320)
5-(26,11,20412) (#10844) 5-(25,11,14580) (#14795) 5-(24,11,10206)
5-(25,10,5832) (#6581) 5-(24,10,4374) (#1478)
5-(24,9,1458) (#6580)
-
11-(30,15,1458)
- family 116, lambda = 1470 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1470)
-
7-(27,12,5880) 7-(26,12,4410)
7-(26,11,1470)
-
6-(27,12,20580) 6-(26,12,14700) 6-(25,12,10290)
6-(26,11,5880) 6-(25,11,4410)
6-(25,10,1470)
-
5-(27,12,64680) 5-(26,12,44100) 5-(25,12,29400) 5-(24,12,19110) (#3347)
5-(26,11,20580) 5-(25,11,14700) 5-(24,11,10290)
5-(25,10,5880) (#6587) 5-(24,10,4410) (#1480)
5-(24,9,1470) (#6586)
-
8-(27,12,1470)
- family 117, lambda = 1494 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1494)
-
7-(27,12,5976) 7-(26,12,4482)
7-(26,11,1494)
-
6-(27,12,20916) 6-(26,12,14940) 6-(25,12,10458)
6-(26,11,5976) 6-(25,11,4482)
6-(25,10,1494)
-
5-(27,12,65736) 5-(26,12,44820) 5-(25,12,29880) 5-(24,12,19422) (#3398)
5-(26,11,20916) 5-(25,11,14940) 5-(24,11,10458)
5-(25,10,5976) (#6599) 5-(24,10,4482) (#1483)
5-(24,9,1494) (#6598)
-
8-(27,12,1494)
- family 118, lambda = 1506 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1506)
-
7-(27,12,6024) 7-(26,12,4518)
7-(26,11,1506)
-
6-(27,12,21084) 6-(26,12,15060) 6-(25,12,10542)
6-(26,11,6024) 6-(25,11,4518)
6-(25,10,1506)
-
5-(27,12,66264) 5-(26,12,45180) 5-(25,12,30120) 5-(24,12,19578) (#3430)
5-(26,11,21084) 5-(25,11,15060) 5-(24,11,10542)
5-(25,10,6024) (#6618) 5-(24,10,4518) (#1486)
5-(24,9,1506) (#6617)
-
8-(27,12,1506)
- family 119, lambda = 1518 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1518)
-
10-(30,15,6072) 10-(29,15,4554)
10-(29,14,1518)
-
9-(30,15,21252) 9-(29,15,15180) 9-(28,15,10626)
9-(29,14,6072) 9-(28,14,4554)
9-(28,13,1518)
-
8-(30,15,66792) 8-(29,15,45540) 8-(28,15,30360) 8-(27,15,19734)
8-(29,14,21252) 8-(28,14,15180) 8-(27,14,10626)
8-(28,13,6072) 8-(27,13,4554)
8-(27,12,1518)
-
7-(30,15,192027) 7-(29,15,125235) 7-(28,15,79695) 7-(27,15,49335) 7-(26,15,29601)
7-(29,14,66792) 7-(28,14,45540) 7-(27,14,30360) 7-(26,14,19734)
7-(28,13,21252) 7-(27,13,15180) 7-(26,13,10626) (#10030)
7-(27,12,6072) 7-(26,12,4554)
7-(26,11,1518)
-
6-(30,15,512072) 6-(29,15,320045) 6-(28,15,194810) 6-(27,15,115115) 6-(26,15,65780) 6-(25,15,36179)
6-(29,14,192027) 6-(28,14,125235) 6-(27,14,79695) 6-(26,14,49335) 6-(25,14,29601)
6-(28,13,66792) 6-(27,13,45540) 6-(26,13,30360) (#10029) 6-(25,13,19734) (#10037)
6-(27,12,21252) 6-(26,12,15180) 6-(25,12,10626) (#10028)
6-(26,11,6072) 6-(25,11,4554)
6-(25,10,1518)
-
5-(30,15,1280180) (#6629) 5-(29,15,768108) 5-(28,15,448063) 5-(27,15,253253) 5-(26,15,138138) 5-(25,15,72358) 5-(24,15,36179)
5-(29,14,512072) (#6628) 5-(28,14,320045) (#3462) 5-(27,14,194810) 5-(26,14,115115) 5-(25,14,65780) 5-(24,14,36179)
5-(28,13,192027) (#6627) 5-(27,13,125235) (#3461) 5-(26,13,79695) (#3459) 5-(25,13,49335) (#10034) 5-(24,13,29601) (#10041)
5-(27,12,66792) (#6626) 5-(26,12,45540) (#3460) 5-(25,12,30360) (#3458) 5-(24,12,19734) (#3457)
5-(26,11,21252) (#6625) 5-(25,11,15180) (#1596) 5-(24,11,10626) (#1595)
5-(25,10,6072) (#6624) 5-(24,10,4554) (#1488)
5-(24,9,1518) (#6623)
-
11-(30,15,1518)
- family 120, lambda = 1530 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1530)
-
7-(27,12,6120) 7-(26,12,4590)
7-(26,11,1530)
-
6-(27,12,21420) 6-(26,12,15300) 6-(25,12,10710)
6-(26,11,6120) 6-(25,11,4590)
6-(25,10,1530)
-
5-(27,12,67320) 5-(26,12,45900) 5-(25,12,30600) 5-(24,12,19890) (#3489)
5-(26,11,21420) 5-(25,11,15300) 5-(24,11,10710)
5-(25,10,6120) (#6635) 5-(24,10,4590) (#1490)
5-(24,9,1530) (#6634)
-
8-(27,12,1530)
- family 121, lambda = 1542 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1542)
-
7-(27,12,6168) 7-(26,12,4626)
7-(26,11,1542)
-
6-(27,12,21588) 6-(26,12,15420) 6-(25,12,10794)
6-(26,11,6168) 6-(25,11,4626)
6-(25,10,1542)
-
5-(27,12,67848) 5-(26,12,46260) 5-(25,12,30840) 5-(24,12,20046) (#3515)
5-(26,11,21588) 5-(25,11,15420) 5-(24,11,10794)
5-(25,10,6168) (#6641) 5-(24,10,4626) (#1492)
5-(24,9,1542) (#6640)
-
8-(27,12,1542)
- family 122, lambda = 1554 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1554)
-
7-(27,12,6216) 7-(26,12,4662)
7-(26,11,1554)
-
6-(27,12,21756) 6-(26,12,15540) 6-(25,12,10878)
6-(26,11,6216) 6-(25,11,4662)
6-(25,10,1554)
-
5-(27,12,68376) 5-(26,12,46620) 5-(25,12,31080) 5-(24,12,20202) (#3542)
5-(26,11,21756) 5-(25,11,15540) 5-(24,11,10878)
5-(25,10,6216) (#6647) 5-(24,10,4662) (#1494)
5-(24,9,1554) (#6646)
-
8-(27,12,1554)
- family 123, lambda = 1566 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1566)
-
10-(30,15,6264) 10-(29,15,4698)
10-(29,14,1566)
-
9-(30,15,21924) 9-(29,15,15660) 9-(28,15,10962)
9-(29,14,6264) 9-(28,14,4698)
9-(28,13,1566)
-
8-(30,15,68904) 8-(29,15,46980) 8-(28,15,31320) 8-(27,15,20358)
8-(29,14,21924) 8-(28,14,15660) 8-(27,14,10962)
8-(28,13,6264) 8-(27,13,4698)
8-(27,12,1566)
-
7-(30,15,198099) 7-(29,15,129195) 7-(28,15,82215) 7-(27,15,50895) 7-(26,15,30537)
7-(29,14,68904) 7-(28,14,46980) 7-(27,14,31320) 7-(26,14,20358)
7-(28,13,21924) 7-(27,13,15660) 7-(26,13,10962) (#10048)
7-(27,12,6264) 7-(26,12,4698)
7-(26,11,1566)
-
6-(30,15,528264) 6-(29,15,330165) 6-(28,15,200970) 6-(27,15,118755) 6-(26,15,67860) 6-(25,15,37323)
6-(29,14,198099) 6-(28,14,129195) 6-(27,14,82215) 6-(26,14,50895) 6-(25,14,30537)
6-(28,13,68904) 6-(27,13,46980) 6-(26,13,31320) (#10047) 6-(25,13,20358) (#10057)
6-(27,12,21924) 6-(26,12,15660) 6-(25,12,10962) (#10044)
6-(26,11,6264) 6-(25,11,4698)
6-(25,10,1566)
-
5-(30,15,1320660) (#10071) 5-(29,15,792396) 5-(28,15,462231) 5-(27,15,261261) 5-(26,15,142506) 5-(25,15,74646) 5-(24,15,37323)
5-(29,14,528264) (#10070) 5-(28,14,330165) (#10069) 5-(27,14,200970) 5-(26,14,118755) 5-(25,14,67860) 5-(24,14,37323)
5-(28,13,198099) (#10068) 5-(27,13,129195) (#10067) 5-(26,13,82215) (#10052) 5-(25,13,50895) (#10054) 5-(24,13,30537) (#10063)
5-(27,12,68904) (#10066) 5-(26,12,46980) (#10062) 5-(25,12,31320) (#10045) 5-(24,12,20358) (#3569)
5-(26,11,21924) (#10061) 5-(25,11,15660) (#10053) 5-(24,11,10962) (#10046)
5-(25,10,6264) (#6657) 5-(24,10,4698) (#1497)
5-(24,9,1566) (#6656)
-
11-(30,15,1566)
- family 124, lambda = 1578 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1578)
-
7-(27,12,6312) 7-(26,12,4734)
7-(26,11,1578)
-
6-(27,12,22092) 6-(26,12,15780) 6-(25,12,11046)
6-(26,11,6312) 6-(25,11,4734)
6-(25,10,1578)
-
5-(27,12,69432) 5-(26,12,47340) 5-(25,12,31560) 5-(24,12,20514) (#3596)
5-(26,11,22092) 5-(25,11,15780) 5-(24,11,11046)
5-(25,10,6312) (#6663) 5-(24,10,4734) (#1499)
5-(24,9,1578) (#6662)
-
8-(27,12,1578)
- family 125, lambda = 1590 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1590)
-
7-(27,12,6360) 7-(26,12,4770)
7-(26,11,1590)
-
6-(27,12,22260) 6-(26,12,15900) 6-(25,12,11130)
6-(26,11,6360) 6-(25,11,4770)
6-(25,10,1590)
-
5-(27,12,69960) 5-(26,12,47700) 5-(25,12,31800) 5-(24,12,20670) (#3621)
5-(26,11,22260) 5-(25,11,15900) 5-(24,11,11130)
5-(25,10,6360) (#6669) 5-(24,10,4770) (#1501)
5-(24,9,1590) (#6668)
-
8-(27,12,1590)
- family 126, lambda = 1602 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1602)
-
7-(27,12,6408) 7-(26,12,4806)
7-(26,11,1602)
-
6-(27,12,22428) 6-(26,12,16020) 6-(25,12,11214)
6-(26,11,6408) 6-(25,11,4806)
6-(25,10,1602)
-
5-(27,12,70488) 5-(26,12,48060) 5-(25,12,32040) 5-(24,12,20826) (#3648)
5-(26,11,22428) 5-(25,11,16020) 5-(24,11,11214)
5-(25,10,6408) (#6675) 5-(24,10,4806) (#1503)
5-(24,9,1602) (#6674)
-
8-(27,12,1602)
- family 127, lambda = 1614 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1614)
-
7-(27,12,6456) 7-(26,12,4842)
7-(26,11,1614)
-
6-(27,12,22596) 6-(26,12,16140) 6-(25,12,11298)
6-(26,11,6456) 6-(25,11,4842)
6-(25,10,1614)
-
5-(27,12,71016) 5-(26,12,48420) 5-(25,12,32280) 5-(24,12,20982) (#3674)
5-(26,11,22596) 5-(25,11,16140) 5-(24,11,11298)
5-(25,10,6456) (#6681) 5-(24,10,4842) (#1505)
5-(24,9,1614) (#6680)
-
8-(27,12,1614)
- family 128, lambda = 1626 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1626)
-
7-(27,12,6504) 7-(26,12,4878)
7-(26,11,1626)
-
6-(27,12,22764) 6-(26,12,16260) 6-(25,12,11382)
6-(26,11,6504) 6-(25,11,4878)
6-(25,10,1626)
-
5-(27,12,71544) 5-(26,12,48780) 5-(25,12,32520) 5-(24,12,21138) (#3701)
5-(26,11,22764) 5-(25,11,16260) 5-(24,11,11382)
5-(25,10,6504) (#6689) 5-(24,10,4878) (#1508)
5-(24,9,1626) (#6688)
-
8-(27,12,1626)
- family 129, lambda = 1638 containing 14 designs:
minpath=(0, 1, 0) minimal_t=5-
10-(29,14,1638)
-
9-(29,14,6552) 9-(28,14,4914)
9-(28,13,1638)
-
8-(29,14,22932) 8-(28,14,16380) 8-(27,14,11466)
8-(28,13,6552) 8-(27,13,4914)
8-(27,12,1638)
-
7-(29,14,72072) 7-(28,14,49140) (#11346) 7-(27,14,32760) 7-(26,14,21294)
7-(28,13,22932) 7-(27,13,16380) 7-(26,13,11466)
7-(27,12,6552) 7-(26,12,4914)
7-(26,11,1638)
-
6-(29,14,207207) 6-(28,14,135135) (#11345) 6-(27,14,85995) (#11354) 6-(26,14,53235) 6-(25,14,31941)
6-(28,13,72072) 6-(27,13,49140) (#11341) 6-(26,13,32760) 6-(25,13,21294)
6-(27,12,22932) 6-(26,12,16380) 6-(25,12,11466)
6-(26,11,6552) 6-(25,11,4914)
6-(25,10,1638)
-
5-(29,14,552552) 5-(28,14,345345) (#11350) 5-(27,14,210210) (#11351) 5-(26,14,124215) (#11358) 5-(25,14,70980) 5-(24,14,39039)
5-(28,13,207207) 5-(27,13,135135) (#11342) 5-(26,13,85995) (#11344) 5-(25,13,53235) 5-(24,13,31941)
5-(27,12,72072) 5-(26,12,49140) (#11343) 5-(25,12,32760) 5-(24,12,21294) (#3732)
5-(26,11,22932) 5-(25,11,16380) 5-(24,11,11466)
5-(25,10,6552) (#6725) 5-(24,10,4914) (#1510)
5-(24,9,1638) (#6724)
-
10-(29,14,1638)
- family 130, lambda = 1650 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1650)
-
10-(30,15,6600) 10-(29,15,4950)
10-(29,14,1650)
-
9-(30,15,23100) 9-(29,15,16500) 9-(28,15,11550)
9-(29,14,6600) 9-(28,14,4950)
9-(28,13,1650)
-
8-(30,15,72600) 8-(29,15,49500) 8-(28,15,33000) 8-(27,15,21450)
8-(29,14,23100) 8-(28,14,16500) 8-(27,14,11550)
8-(28,13,6600) 8-(27,13,4950)
8-(27,12,1650)
-
7-(30,15,208725) 7-(29,15,136125) 7-(28,15,86625) 7-(27,15,53625) 7-(26,15,32175)
7-(29,14,72600) 7-(28,14,49500) 7-(27,14,33000) 7-(26,14,21450)
7-(28,13,23100) 7-(27,13,16500) 7-(26,13,11550) (#10126)
7-(27,12,6600) 7-(26,12,4950)
7-(26,11,1650)
-
6-(30,15,556600) 6-(29,15,347875) 6-(28,15,211750) 6-(27,15,125125) 6-(26,15,71500) 6-(25,15,39325)
6-(29,14,208725) 6-(28,14,136125) 6-(27,14,86625) 6-(26,14,53625) 6-(25,14,32175)
6-(28,13,72600) 6-(27,13,49500) 6-(26,13,33000) (#10125) 6-(25,13,21450) (#10135)
6-(27,12,23100) 6-(26,12,16500) 6-(25,12,11550) (#10122)
6-(26,11,6600) 6-(25,11,4950)
6-(25,10,1650)
-
5-(30,15,1391500) (#10149) 5-(29,15,834900) 5-(28,15,487025) 5-(27,15,275275) 5-(26,15,150150) 5-(25,15,78650) 5-(24,15,39325)
5-(29,14,556600) (#10148) 5-(28,14,347875) (#10147) 5-(27,14,211750) 5-(26,14,125125) 5-(25,14,71500) 5-(24,14,39325)
5-(28,13,208725) (#10146) 5-(27,13,136125) (#10145) 5-(26,13,86625) (#10130) 5-(25,13,53625) (#10132) 5-(24,13,32175) (#10141)
5-(27,12,72600) (#10144) 5-(26,12,49500) (#10140) 5-(25,12,33000) (#10123) 5-(24,12,21450) (#3759)
5-(26,11,23100) (#10139) 5-(25,11,16500) (#10131) 5-(24,11,11550) (#10124)
5-(25,10,6600) (#6731) 5-(24,10,4950) (#1512)
5-(24,9,1650) (#6730)
-
11-(30,15,1650)
- family 131, lambda = 1662 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1662)
-
7-(27,12,6648) 7-(26,12,4986)
7-(26,11,1662)
-
6-(27,12,23268) 6-(26,12,16620) 6-(25,12,11634)
6-(26,11,6648) 6-(25,11,4986)
6-(25,10,1662)
-
5-(27,12,73128) 5-(26,12,49860) 5-(25,12,33240) 5-(24,12,21606) (#3786)
5-(26,11,23268) 5-(25,11,16620) 5-(24,11,11634)
5-(25,10,6648) (#6737) 5-(24,10,4986) (#1514)
5-(24,9,1662) (#6736)
-
8-(27,12,1662)
- family 132, lambda = 1674 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1674)
-
7-(27,12,6696) 7-(26,12,5022)
7-(26,11,1674)
-
6-(27,12,23436) 6-(26,12,16740) 6-(25,12,11718)
6-(26,11,6696) 6-(25,11,5022)
6-(25,10,1674)
-
5-(27,12,73656) 5-(26,12,50220) 5-(25,12,33480) 5-(24,12,21762) (#3812)
5-(26,11,23436) 5-(25,11,16740) 5-(24,11,11718)
5-(25,10,6696) (#6743) 5-(24,10,5022) (#1516)
5-(24,9,1674) (#6742)
-
8-(27,12,1674)
- family 133, lambda = 1686 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1686)
-
7-(27,12,6744) 7-(26,12,5058)
7-(26,11,1686)
-
6-(27,12,23604) 6-(26,12,16860) 6-(25,12,11802)
6-(26,11,6744) 6-(25,11,5058)
6-(25,10,1686)
-
5-(27,12,74184) 5-(26,12,50580) 5-(25,12,33720) 5-(24,12,21918) (#3839)
5-(26,11,23604) 5-(25,11,16860) 5-(24,11,11802)
5-(25,10,6744) (#6753) 5-(24,10,5058) (#1519)
5-(24,9,1686) (#6752)
-
8-(27,12,1686)
- family 134, lambda = 1698 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1698)
-
10-(30,15,6792) 10-(29,15,5094)
10-(29,14,1698)
-
9-(30,15,23772) 9-(29,15,16980) 9-(28,15,11886)
9-(29,14,6792) 9-(28,14,5094)
9-(28,13,1698)
-
8-(30,15,74712) 8-(29,15,50940) 8-(28,15,33960) 8-(27,15,22074)
8-(29,14,23772) 8-(28,14,16980) 8-(27,14,11886)
8-(28,13,6792) 8-(27,13,5094)
8-(27,12,1698)
-
7-(30,15,214797) 7-(29,15,140085) 7-(28,15,89145) 7-(27,15,55185) 7-(26,15,33111)
7-(29,14,74712) 7-(28,14,50940) 7-(27,14,33960) 7-(26,14,22074)
7-(28,13,23772) 7-(27,13,16980) 7-(26,13,11886) (#10154)
7-(27,12,6792) 7-(26,12,5094)
7-(26,11,1698)
-
6-(30,15,572792) 6-(29,15,357995) 6-(28,15,217910) 6-(27,15,128765) 6-(26,15,73580) 6-(25,15,40469)
6-(29,14,214797) 6-(28,14,140085) 6-(27,14,89145) 6-(26,14,55185) 6-(25,14,33111)
6-(28,13,74712) 6-(27,13,50940) 6-(26,13,33960) (#10153) 6-(25,13,22074) (#10163)
6-(27,12,23772) 6-(26,12,16980) 6-(25,12,11886) (#10150)
6-(26,11,6792) 6-(25,11,5094)
6-(25,10,1698)
-
5-(30,15,1431980) (#10177) 5-(29,15,859188) 5-(28,15,501193) 5-(27,15,283283) 5-(26,15,154518) 5-(25,15,80938) 5-(24,15,40469)
5-(29,14,572792) (#10176) 5-(28,14,357995) (#10175) 5-(27,14,217910) 5-(26,14,128765) 5-(25,14,73580) 5-(24,14,40469)
5-(28,13,214797) (#10174) 5-(27,13,140085) (#10173) 5-(26,13,89145) (#10158) 5-(25,13,55185) (#10160) 5-(24,13,33111) (#10169)
5-(27,12,74712) (#10172) 5-(26,12,50940) (#10168) 5-(25,12,33960) (#10151) 5-(24,12,22074) (#3865)
5-(26,11,23772) (#10167) 5-(25,11,16980) (#10159) 5-(24,11,11886) (#10152)
5-(25,10,6792) (#6759) 5-(24,10,5094) (#1521)
5-(24,9,1698) (#6758)
-
11-(30,15,1698)
- family 135, lambda = 1722 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1722)
-
7-(27,12,6888) 7-(26,12,5166)
7-(26,11,1722)
-
6-(27,12,24108) 6-(26,12,17220) 6-(25,12,12054)
6-(26,11,6888) 6-(25,11,5166)
6-(25,10,1722)
-
5-(27,12,75768) 5-(26,12,51660) 5-(25,12,34440) 5-(24,12,22386) (#3918)
5-(26,11,24108) 5-(25,11,17220) 5-(24,11,12054)
5-(25,10,6888) (#6769) 5-(24,10,5166) (#1524)
5-(24,9,1722) (#6768)
-
8-(27,12,1722)
- family 136, lambda = 1734 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1734)
-
7-(27,12,6936) 7-(26,12,5202)
7-(26,11,1734)
-
6-(27,12,24276) 6-(26,12,17340) 6-(25,12,12138)
6-(26,11,6936) 6-(25,11,5202)
6-(25,10,1734)
-
5-(27,12,76296) 5-(26,12,52020) 5-(25,12,34680) 5-(24,12,22542) (#3945)
5-(26,11,24276) 5-(25,11,17340) 5-(24,11,12138)
5-(25,10,6936) (#6775) 5-(24,10,5202) (#1526)
5-(24,9,1734) (#6774)
-
8-(27,12,1734)
- family 137, lambda = 1746 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1746)
-
7-(27,12,6984) 7-(26,12,5238)
7-(26,11,1746)
-
6-(27,12,24444) 6-(26,12,17460) 6-(25,12,12222)
6-(26,11,6984) 6-(25,11,5238)
6-(25,10,1746)
-
5-(27,12,76824) 5-(26,12,52380) 5-(25,12,34920) 5-(24,12,22698) (#3970)
5-(26,11,24444) 5-(25,11,17460) 5-(24,11,12222)
5-(25,10,6984) (#6783) 5-(24,10,5238) (#1529)
5-(24,9,1746) (#6782)
-
8-(27,12,1746)
- family 138, lambda = 1758 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1758)
-
7-(27,12,7032) 7-(26,12,5274)
7-(26,11,1758)
-
6-(27,12,24612) 6-(26,12,17580) 6-(25,12,12306)
6-(26,11,7032) 6-(25,11,5274)
6-(25,10,1758)
-
5-(27,12,77352) 5-(26,12,52740) 5-(25,12,35160) 5-(24,12,22854) (#3998)
5-(26,11,24612) 5-(25,11,17580) 5-(24,11,12306)
5-(25,10,7032) (#6789) 5-(24,10,5274) (#1531)
5-(24,9,1758) (#6788)
-
8-(27,12,1758)
- family 139, lambda = 1770 containing 38 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1770)
-
10-(30,15,7080) 10-(29,15,5310)
10-(29,14,1770)
-
9-(30,15,24780) 9-(29,15,17700) 9-(28,15,12390)
9-(29,14,7080) 9-(28,14,5310)
9-(28,13,1770)
-
8-(30,15,77880) 8-(29,15,53100) 8-(28,15,35400) 8-(27,15,23010)
8-(29,14,24780) 8-(28,14,17700) 8-(27,14,12390)
8-(28,13,7080) (#17927) 8-(27,13,5310)
8-(27,12,1770)
-
7-(30,15,223905) (#11426) 7-(29,15,146025) 7-(28,15,92925) 7-(27,15,57525) 7-(26,15,34515)
7-(29,14,77880) (#15459) 7-(28,14,53100) (#11408) 7-(27,14,35400) 7-(26,14,23010)
7-(28,13,24780) (#15458) 7-(27,13,17700) (#17928) 7-(26,13,12390)
7-(27,12,7080) (#14839) 7-(26,12,5310)
7-(26,11,1770)
-
6-(30,15,597080) (#11425) 6-(29,15,373175) (#11434) 6-(28,15,227150) 6-(27,15,134225) 6-(26,15,76700) 6-(25,15,42185)
6-(29,14,223905) (#11417) 6-(28,14,146025) (#11407) 6-(27,14,92925) (#11418) 6-(26,14,57525) 6-(25,14,34515)
6-(28,13,77880) (#11411) 6-(27,13,53100) (#11404) 6-(26,13,35400) (#17932) 6-(25,13,23010)
6-(27,12,24780) (#10866) 6-(26,12,17700) (#14841) 6-(25,12,12390)
6-(26,11,7080) (#14840) 6-(25,11,5310)
6-(25,10,1770)
-
5-(30,15,1492700) (#11430) 5-(29,15,895620) (#11432) 5-(28,15,522445) (#11438) 5-(27,15,295295) 5-(26,15,161070) 5-(25,15,84370) 5-(24,15,42185)
5-(29,14,597080) (#11423) 5-(28,14,373175) (#11412) 5-(27,14,227150) (#11414) 5-(26,14,134225) (#11427) 5-(25,14,76700) 5-(24,14,42185)
5-(28,13,223905) (#11413) 5-(27,13,146025) (#11405) 5-(26,13,92925) (#11406) 5-(25,13,57525) (#17935) 5-(24,13,34515)
5-(27,12,77880) (#10867) 5-(26,12,53100) (#10869) 5-(25,12,35400) (#14848) 5-(24,12,23010) (#4025)
5-(26,11,24780) (#10868) 5-(25,11,17700) (#14845) 5-(24,11,12390)
5-(25,10,7080) (#6795) 5-(24,10,5310) (#1533)
5-(24,9,1770) (#6794)
-
11-(30,15,1770)
- family 140, lambda = 1782 containing 43 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1782)
-
10-(30,15,7128) 10-(29,15,5346)
10-(29,14,1782)
-
9-(30,15,24948) 9-(29,15,17820) 9-(28,15,12474)
9-(29,14,7128) 9-(28,14,5346)
9-(28,13,1782)
-
8-(30,15,78408) 8-(29,15,53460) 8-(28,15,35640) 8-(27,15,23166)
8-(29,14,24948) 8-(28,14,17820) 8-(27,14,12474)
8-(28,13,7128) (#17937) 8-(27,13,5346)
8-(27,12,1782)
-
7-(30,15,225423) (#11453) 7-(29,15,147015) 7-(28,15,93555) 7-(27,15,57915) 7-(26,15,34749)
7-(29,14,78408) (#14962) 7-(28,14,53460) (#11443) 7-(27,14,35640) 7-(26,14,23166)
7-(28,13,24948) (#14961) 7-(27,13,17820) (#14960) 7-(26,13,12474) (#10248)
7-(27,12,7128) (#14851) 7-(26,12,5346)
7-(26,11,1782)
-
6-(30,15,601128) (#11452) 6-(29,15,375705) (#11459) 6-(28,15,228690) 6-(27,15,135135) 6-(26,15,77220) 6-(25,15,42471)
6-(29,14,225423) (#11447) 6-(28,14,147015) (#11442) 6-(27,14,93555) (#11448) 6-(26,14,57915) 6-(25,14,34749)
6-(28,13,78408) (#11444) 6-(27,13,53460) (#11441) 6-(26,13,35640) (#10247) 6-(25,13,23166) (#10257)
6-(27,12,24948) (#10873) 6-(26,12,17820) (#14853) 6-(25,12,12474) (#10244)
6-(26,11,7128) (#14852) 6-(25,11,5346)
6-(25,10,1782)
-
5-(30,15,1502820) (#10271) 5-(29,15,901692) (#11457) 5-(28,15,525987) (#11463) 5-(27,15,297297) 5-(26,15,162162) 5-(25,15,84942) 5-(24,15,42471)
5-(29,14,601128) (#10270) 5-(28,14,375705) (#10269) 5-(27,14,228690) (#11445) 5-(26,14,135135) (#11454) 5-(25,14,77220) 5-(24,14,42471)
5-(28,13,225423) (#10268) 5-(27,13,147015) (#10267) 5-(26,13,93555) (#10252) 5-(25,13,57915) (#10254) 5-(24,13,34749) (#10263)
5-(27,12,78408) (#10266) 5-(26,12,53460) (#10262) 5-(25,12,35640) (#10245) 5-(24,12,23166) (#4052)
5-(26,11,24948) (#10261) 5-(25,11,17820) (#10253) 5-(24,11,12474) (#10246)
5-(25,10,7128) (#6801) 5-(24,10,5346) (#1535)
5-(24,9,1782) (#6800)
-
11-(30,15,1782)
- family 141, lambda = 1794 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1794)
-
7-(27,12,7176) 7-(26,12,5382)
7-(26,11,1794)
-
6-(27,12,25116) 6-(26,12,17940) 6-(25,12,12558)
6-(26,11,7176) 6-(25,11,5382)
6-(25,10,1794)
-
5-(27,12,78936) 5-(26,12,53820) 5-(25,12,35880) 5-(24,12,23322) (#4077)
5-(26,11,25116) 5-(25,11,17940) 5-(24,11,12558)
5-(25,10,7176) (#6807) 5-(24,10,5382) (#1537)
5-(24,9,1794) (#6806)
-
8-(27,12,1794)
- family 142, lambda = 1806 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1806)
-
7-(27,12,7224) 7-(26,12,5418)
7-(26,11,1806)
-
6-(27,12,25284) 6-(26,12,18060) 6-(25,12,12642)
6-(26,11,7224) 6-(25,11,5418)
6-(25,10,1806)
-
5-(27,12,79464) 5-(26,12,54180) 5-(25,12,36120) 5-(24,12,23478) (#4109)
5-(26,11,25284) 5-(25,11,18060) 5-(24,11,12642)
5-(25,10,7224) (#6828) 5-(24,10,5418) (#1540)
5-(24,9,1806) (#6827)
-
8-(27,12,1806)
- family 143, lambda = 1818 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1818)
-
7-(27,12,7272) 7-(26,12,5454)
7-(26,11,1818)
-
6-(27,12,25452) 6-(26,12,18180) 6-(25,12,12726)
6-(26,11,7272) 6-(25,11,5454)
6-(25,10,1818)
-
5-(27,12,79992) 5-(26,12,54540) 5-(25,12,36360) 5-(24,12,23634) (#4135)
5-(26,11,25452) 5-(25,11,18180) 5-(24,11,12726)
5-(25,10,7272) (#6834) 5-(24,10,5454) (#1542)
5-(24,9,1818) (#6833)
-
8-(27,12,1818)
- family 144, lambda = 1830 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1830)
-
10-(30,15,7320) 10-(29,15,5490)
10-(29,14,1830)
-
9-(30,15,25620) 9-(29,15,18300) 9-(28,15,12810)
9-(29,14,7320) 9-(28,14,5490)
9-(28,13,1830)
-
8-(30,15,80520) 8-(29,15,54900) 8-(28,15,36600) 8-(27,15,23790)
8-(29,14,25620) 8-(28,14,18300) 8-(27,14,12810)
8-(28,13,7320) 8-(27,13,5490)
8-(27,12,1830)
-
7-(30,15,231495) 7-(29,15,150975) 7-(28,15,96075) 7-(27,15,59475) 7-(26,15,35685)
7-(29,14,80520) 7-(28,14,54900) 7-(27,14,36600) 7-(26,14,23790)
7-(28,13,25620) 7-(27,13,18300) 7-(26,13,12810) (#10276)
7-(27,12,7320) 7-(26,12,5490)
7-(26,11,1830)
-
6-(30,15,617320) 6-(29,15,385825) 6-(28,15,234850) 6-(27,15,138775) 6-(26,15,79300) 6-(25,15,43615)
6-(29,14,231495) 6-(28,14,150975) 6-(27,14,96075) 6-(26,14,59475) 6-(25,14,35685)
6-(28,13,80520) 6-(27,13,54900) 6-(26,13,36600) (#10275) 6-(25,13,23790) (#10285)
6-(27,12,25620) 6-(26,12,18300) 6-(25,12,12810) (#10272)
6-(26,11,7320) 6-(25,11,5490)
6-(25,10,1830)
-
5-(30,15,1543300) (#10299) 5-(29,15,925980) 5-(28,15,540155) 5-(27,15,305305) 5-(26,15,166530) 5-(25,15,87230) 5-(24,15,43615)
5-(29,14,617320) (#10298) 5-(28,14,385825) (#10297) 5-(27,14,234850) 5-(26,14,138775) 5-(25,14,79300) 5-(24,14,43615)
5-(28,13,231495) (#10296) 5-(27,13,150975) (#10295) 5-(26,13,96075) (#10280) 5-(25,13,59475) (#10282) 5-(24,13,35685) (#10291)
5-(27,12,80520) (#10294) 5-(26,12,54900) (#10290) 5-(25,12,36600) (#10273) 5-(24,12,23790) (#4161)
5-(26,11,25620) (#10289) 5-(25,11,18300) (#10281) 5-(24,11,12810) (#10274)
5-(25,10,7320) (#6851) 5-(24,10,5490) (#1543)
5-(24,9,1830) (#6850)
-
11-(30,15,1830)
- family 145, lambda = 1842 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1842)
-
7-(27,12,7368) 7-(26,12,5526)
7-(26,11,1842)
-
6-(27,12,25788) 6-(26,12,18420) 6-(25,12,12894)
6-(26,11,7368) 6-(25,11,5526)
6-(25,10,1842)
-
5-(27,12,81048) 5-(26,12,55260) 5-(25,12,36840) 5-(24,12,23946) (#4187)
5-(26,11,25788) 5-(25,11,18420) 5-(24,11,12894)
5-(25,10,7368) (#6861) 5-(24,10,5526) (#1545)
5-(24,9,1842) (#6860)
-
8-(27,12,1842)
- family 146, lambda = 1854 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1854)
-
7-(27,12,7416) 7-(26,12,5562)
7-(26,11,1854)
-
6-(27,12,25956) 6-(26,12,18540) 6-(25,12,12978)
6-(26,11,7416) 6-(25,11,5562)
6-(25,10,1854)
-
5-(27,12,81576) 5-(26,12,55620) 5-(25,12,37080) 5-(24,12,24102) (#4214)
5-(26,11,25956) 5-(25,11,18540) 5-(24,11,12978)
5-(25,10,7416) (#6867) 5-(24,10,5562) (#1547)
5-(24,9,1854) (#6866)
-
8-(27,12,1854)
- family 147, lambda = 1866 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1866)
-
7-(27,12,7464) 7-(26,12,5598)
7-(26,11,1866)
-
6-(27,12,26124) 6-(26,12,18660) 6-(25,12,13062)
6-(26,11,7464) 6-(25,11,5598)
6-(25,10,1866)
-
5-(27,12,82104) 5-(26,12,55980) 5-(25,12,37320) 5-(24,12,24258) (#4241)
5-(26,11,26124) 5-(25,11,18660) 5-(24,11,13062)
5-(25,10,7464) (#6875) 5-(24,10,5598) (#1550)
5-(24,9,1866) (#6874)
-
8-(27,12,1866)
- family 148, lambda = 1878 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1878)
-
7-(27,12,7512) 7-(26,12,5634)
7-(26,11,1878)
-
6-(27,12,26292) 6-(26,12,18780) 6-(25,12,13146)
6-(26,11,7512) 6-(25,11,5634)
6-(25,10,1878)
-
5-(27,12,82632) 5-(26,12,56340) 5-(25,12,37560) 5-(24,12,24414) (#4267)
5-(26,11,26292) 5-(25,11,18780) 5-(24,11,13146)
5-(25,10,7512) (#6881) 5-(24,10,5634) (#1552)
5-(24,9,1878) (#6880)
-
8-(27,12,1878)
- family 149, lambda = 1890 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1890)
-
7-(27,12,7560) 7-(26,12,5670)
7-(26,11,1890)
-
6-(27,12,26460) 6-(26,12,18900) 6-(25,12,13230)
6-(26,11,7560) 6-(25,11,5670)
6-(25,10,1890)
-
5-(27,12,83160) 5-(26,12,56700) 5-(25,12,37800) 5-(24,12,24570) (#4294)
5-(26,11,26460) 5-(25,11,18900) 5-(24,11,13230)
5-(25,10,7560) (#6887) 5-(24,10,5670) (#1554)
5-(24,9,1890) (#6886)
-
8-(27,12,1890)
- family 150, lambda = 1902 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5-
8-(27,12,1902)
-
7-(27,12,7608) 7-(26,12,5706)
7-(26,11,1902)
-
6-(27,12,26628) 6-(26,12,19020) 6-(25,12,13314)
6-(26,11,7608) 6-(25,11,5706)
6-(25,10,1902)
-
5-(27,12,83688) 5-(26,12,57060) 5-(25,12,38040) 5-(24,12,24726) (#4322)
5-(26,11,26628) 5-(25,11,19020) 5-(24,11,13314)
5-(25,10,7608) (#6893) 5-(24,10,5706) (#1556)
5-(24,9,1902) (#6892)
-
8-(27,12,1902)
- family 151, lambda = 1914 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1914)
-
10-(30,15,7656) 10-(29,15,5742)
10-(29,14,1914)
-
9-(30,15,26796) 9-(29,15,19140) 9-(28,15,13398)
9-(29,14,7656) 9-(28,14,5742)
9-(28,13,1914)
-
8-(30,15,84216) 8-(29,15,57420) 8-(28,15,38280) 8-(27,15,24882)
8-(29,14,26796) 8-(28,14,19140) 8-(27,14,13398)
8-(28,13,7656) 8-(27,13,5742)
8-(27,12,1914)
-
7-(30,15,242121) 7-(29,15,157905) 7-(28,15,100485) 7-(27,15,62205) 7-(26,15,37323)
7-(29,14,84216) 7-(28,14,57420) 7-(27,14,38280) 7-(26,14,24882)
7-(28,13,26796) 7-(27,13,19140) 7-(26,13,13398) (#10372)
7-(27,12,7656) 7-(26,12,5742)
7-(26,11,1914)
-
6-(30,15,645656) 6-(29,15,403535) 6-(28,15,245630) 6-(27,15,145145) 6-(26,15,82940) 6-(25,15,45617)
6-(29,14,242121) 6-(28,14,157905) 6-(27,14,100485) 6-(26,14,62205) 6-(25,14,37323)
6-(28,13,84216) 6-(27,13,57420) 6-(26,13,38280) (#10371) 6-(25,13,24882) (#10381)
6-(27,12,26796) 6-(26,12,19140) 6-(25,12,13398) (#10368)
6-(26,11,7656) 6-(25,11,5742)
6-(25,10,1914)
-
5-(30,15,1614140) (#10395) 5-(29,15,968484) 5-(28,15,564949) 5-(27,15,319319) 5-(26,15,174174) 5-(25,15,91234) 5-(24,15,45617)
5-(29,14,645656) (#10394) 5-(28,14,403535) (#10393) 5-(27,14,245630) 5-(26,14,145145) 5-(25,14,82940) 5-(24,14,45617)
5-(28,13,242121) (#10392) 5-(27,13,157905) (#10391) 5-(26,13,100485) (#10376) 5-(25,13,62205) (#10378) 5-(24,13,37323) (#10387)
5-(27,12,84216) (#10390) 5-(26,12,57420) (#10386) 5-(25,12,38280) (#10369) 5-(24,12,24882) (#4348)
5-(26,11,26796) (#10385) 5-(25,11,19140) (#10377) 5-(24,11,13398) (#10370)
5-(25,10,7656) (#6899) 5-(24,10,5742) (#1558)
5-(24,9,1914) (#6898)
-
11-(30,15,1914)
- family 152, lambda = 1926 containing 20 designs:
minpath=(0, 0, 0) minimal_t=5-
11-(30,15,1926)
-
10-(30,15,7704) 10-(29,15,5778)
10-(29,14,1926)
-
9-(30,15,26964) 9-(29,15,19260) 9-(28,15,13482)
9-(29,14,7704) 9-(28,14,5778)
9-(28,13,1926)
-
8-(30,15,84744) 8-(29,15,57780) 8-(28,15,38520) 8-(27,15,25038)
8-(29,14,26964) 8-(28,14,19260) 8-(27,14,13482)
8-(28,13,7704) 8-(27,13,5778)
8-(27,12,1926)
-
7-(30,15,243639) 7-(29,15,158895) 7-(28,15,101115) 7-(27,15,62595) 7-(26,15,37557)
7-(29,14,84744) 7-(28,14,57780) 7-(27,14,38520) 7-(26,14,25038)
7-(28,13,26964) 7-(27,13,19260) 7-(26,13,13482)
7-(27,12,7704) 7-(26,12,5778)
7-(26,11,1926) (#13711)
-
6-(30,15,649704) 6-(29,15,406065) 6-(28,15,247170) 6-(27,15,146055) 6-(26,15,83460) 6-(25,15,45903)
6-(29,14,243639) 6-(28,14,158895) 6-(27,14,101115) 6-(26,14,62595) 6-(25,14,37557)
6-(28,13,84744) 6-(27,13,57780) 6-(26,13,38520) 6-(25,13,25038)
6-(27,12,26964) 6-(26,12,19260) 6-(25,12,13482)
6-(26,11,7704) (#13712) 6-(25,11,5778) (#13714)
6-(25,10,1926) (#13713)
-
5-(30,15,1624260) (#13735) 5-(29,15,974556) 5-(28,15,568491) 5-(27,15,321321) 5-(26,15,175266) 5-(25,15,91806) 5-(24,15,45903)
5-(29,14,649704) (#13734) 5-(28,14,406065) (#13732) 5-(27,14,247170) 5-(26,14,146055) 5-(25,14,83460) 5-(24,14,45903)
5-(28,13,243639) (#13733) 5-(27,13,158895) (#13730) 5-(26,13,101115) (#13728) 5-(25,13,62595) 5-(24,13,37557)
5-(27,12,84744) (#13731) 5-(26,12,57780) (#13729) 5-(25,12,38520) (#13727) 5-(24,12,25038) (#4375)
5-(26,11,26964) (#13718) 5-(25,11,19260) (#13719) 5-(24,11,13482) (#13725)
5-(25,10,7704) (#6909) 5-(24,10,5778) (#1561)
5-(24,9,1926) (#6908)
-
11-(30,15,1926)
created: Fri Oct 23 11:21:06 CEST 2009